
PolyCheck: Dynamic Verification of Iteration
Space Transformations on Affine Programs

Wenlei Bao

The Ohio State University, USA

bao.79@osu.edu

Sriram Krishnamoorthy

Pacific Northwest National Laboratory,
USA

sriram@pnnl.gov

Louis-Noël Pouchet

The Ohio State University, USA

pouchet@cse.ohio-state.edu

Fabrice Rastello

INRIA, France

Fabrice.Rastello@inria.fr

P. Sadayappan

The Ohio State University, USA

saday@cse.ohio-state.edu

Abstract

High-level compiler transformations, especially loop transforma-
tions, are widely recognized as critical optimizations to restructure
programs to improve data locality and expose parallelism. Guar-
anteeing the correctness of program transformations is essential,
and to date three main approaches have been developed: proof
of equivalence of affine programs, matching the execution traces
of programs, and checking bit-by-bit equivalence of program out-
puts. Each technique suffers from limitations in the kind of trans-
formations supported, space complexity, or the sensitivity to the
testing dataset. In this paper, we take a novel approach that ad-
dresses all three limitations to provide an automatic bug checker
to verify any iteration reordering transformations on affine pro-
grams, including non-affine transformations, with space consump-
tion proportional to the original program data and robust to arbi-
trary datasets of a given size. We achieve this by exploiting the
structure of affine program control- and data-flow to generate at
compile-time lightweight checker code to be executed within the
transformed program. Experimental results assess the correctness
and effectiveness of our method and its increased coverage over
previous approaches.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Algorithms, verification

Keywords Dynamic verification, iteration space transformation,
static analysis

1. Introduction

Optimized programs are often complex and rarely resemble the
original source programs. It is difficult, if not impossible, to verify
the correctness of such programs through visual inspection. Auto-
mated testing is part of the classical arsenal to find bugs in com-
piler implementations, including production compilers [2, 5] and
research compilers [41]. However, a typical challenge occurs with
the selection of a relevant dataset for the program to expose a bug.
If we limit testing to the bit-by-bit equivalence of outputs produced
by the original and transformed programs, what guarantees that a
match implies the lack of a bug? A simplistic example would en-
tail testing a program multiplying two matrices, where the input
matrices are filled with zeros. For example, a buggy-transformed
program stripped of all computation would pass this test.

To address this problem, automatic equivalence checking tech-
niques that prove two programs are equivalent have been devel-
oped. For instance, focusing on programs with static affine control-
and data-flow, prior approaches employ static verification by sys-
tematically deriving one-to-one correspondence between the oper-
ations in the original and transformed programs and ensuring they
satisfy the same data dependences [9, 33, 54]. This has the sig-
nificant advantage of being independent of the input dataset, yet
with the drawback of requiring both the original and transformed
programs to be affine programs. In other words, any iteration re-
ordering transformation that generates non-affine expressions in the
transformed program, such as parametric tiling or numerous ab-
stract syntax tree (AST)-based complementary optimizations, can-
not be verified with such an approach. Schordan et al. [46] recently
developed an approach to cope with these limitations based on
matching the trace of the original and transformed program using
rewrite rules and a state transition graph. However, this approach
suffers from a major space complexity issue: the traces manipu-
lated are proportional, in size, to the number of operations executed
by the program. For example, for an N ×N matrix multiplication
code, the trace size is O(N3).

To date, all proposed solutions to the verification of iteration
reordering transformations suffer from at least one major limita-
tion in the supported transformations (e.g., Integer Set Analysis
(ISA) [54]), sensitivity to the input dataset (e.g., output difference
checking), or space complexity (e.g., CodeThorn [46]), which is
the space to store any state (arrays, instruction traces, etc.). In this
work, we develop a novel approach to assess the correctness of ar-
bitrary iteration reordering transformations on an affine program,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
c© 2016 ACM. 978-1-4503-3549-2/16/01...$15.00

http://dx.doi.org/10.1145/2837614.2837656

539

for (i=0; i<N; i++)

/*S:*/ A[i] = B[i];

(a) Original

i=0; do { //N and T are coprime

A[i] = B[i];

i = (i+T)%N;

} while (i!=0);

(c) Round-robin

for (i=0; i<M; i++)

for(j=idx[i]; j<idx[i+1]; j++)

A[j] = B[j];

//0=idx[0]<=idx[1]<=...<=idx[M]=N

(e) Irregular sectioning

for (i=0; i<N/32; i++)

for (j=0; j<32; j++)

A[i*32+j] = B[i*32+j];

for(j=(N/32)*32; j<N; j++)

A[j] = B[j];

(b) Constant sectioning

for (i=0; i<N/T; i++)

for (j=0; j<T; j++)

A[i*T+j] = B[i*T+j];

for(j=(N/T)*T; j<N; j++)

A[j] = B[j];

(d) Parametric sectioning

void fn(int lo, int hi) {

if (lo>hi) return;

if (lo==hi) A[lo] = B[lo];

else {

fn(lo, (lo+hi)/2);

fn((lo+hi)/2+1, hi); } }

/*Call fn*/ fn(0,N-1);

(f) Recursion

Figure 1: Example input program (a) and transformed programs to be verified ((b)–(f)). ISA can verify (b). Our approach can dynamically
verify all transformed versions against the input.

including non-affine transformations. The approach is robust to ar-
bitrary input datasets of a given size and only requires space propor-
tional to the program’s data space. To achieve this, we design an ap-
proach that employs polyhedral data-flow analysis on the affine in-
put program to generate lightweight checker codes that are embed-
ded in the transformed program. The check-equipped transformed
code is then run, and information about any violated data depen-
dence or other iteration reordering errors is reported to the user.
This enables conclusions about the programs’ equivalence for the
given input problem size.

We use our PolyCheck tool to verify the correctness of nu-
merous polyhedral compiler optimizations in the Polyhedral Com-
piler Collection (PoCC) research compiler [7], including non-affine
transformations such as parametric tiling and some affine AST-
based transformations that are not currently supported by the state-
of-the-art affine checker tool ISA [3]. Using PolyCheck, we also
verify code generated by Pochoir [50], a DSL-based stencil com-
piler, and serial execution of Cilk [18], a recursive programming
system. By comparing it with the results presented for CodeThorn
by Schordan et al. [46], we show that PolyCheck is much more ef-
ficient than trace-based equivalence checking schemes. Finally, we
demonstrate PolyCheck’s ability to identify bugs in the polyhedral
compiler PolyOpt/C 0.2.0 [39].

Our approach is orthogonal and complementary to other works
that assess the correctness of parallelism transformations (e.g., race
detection tools [23, 45]) or out-of-bound array access checks. With
this research, we make the following contributions.
• We present the first dynamic bug checker for affine pro-

grams transformed by arbitrary iteration reordering transfor-
mations using polyhedral analysis at compile-time to create a
lightweight checking code to be executed along with the trans-
formed program.

• Our approach addresses the three main limitations of other it-
eration reordering checkers because it supports arbitrary loop
(tiling, interchange, etc.) and non-affine transformations (para-
metric tiling, etc.), is not sensitive to the input dataset values,
and only requires space proportional to that needed by the orig-
inal program during its execution.

• We demonstrate the effectiveness of our approach in asserting
the correctness of Pochoir and Cilk programs and through nu-
merous passes of PoCC, a research polyhedral compiler that
combines both affine and non-affine transformations.

• We show that PolyCheck can detect bugs in PolyOpt/C 0.2.0 [39]
that were first detected by CodeThorn and is much more effi-
cient than CodeThorn’s trace-based equivalence checker.

• We present and evaluate optimizations to the checker that ex-
ploit regularities in the program dependence graph.

2. Motivation and Overview

To motivate the need for a verification approach that is robust to ar-
bitrary iteration reordering transformations, we initially use a sim-
ple example. We consider the code shown in Figure 1(a), perform-
ing a copy from array B to array A. This code is an affine pro-
gram with static control- and data-flow. With affine programs, loop
bounds, conditionals, and array access expressions only involve
affine expressions of the surrounding loop iterators and program
parameters [21]. Figures 1(a) through (f) show various transformed
versions of this program. Static verification tools checking equiv-
alence between affine programs can verify that the version in Fig-
ure 1(b)—tiled with a constant tile size known at code-generation
time—is equivalent to the input program. However, they fail to ver-
ify the remaining versions. Figure 1(d) shows a code snippet typi-
cally generated by parametric tiling techniques that do not require
the tile size to be known at code-generation time. Other versions
may be manually or automatically generated. The version in Fig-
ure 1(e) is non-affine, and its correctness depends on the values of
the idx array. Recursive versions, such as in Figure 1(f), can be
generated for recursive parallelism or cache obliviousness.

The approach we present in this paper can dynamically verify
all versions shown in Figure 1. In contrast to static equivalence, we
require an instrumented program to be executed. This makes our
equivalence property hold for the problem size used when running
the checker, a restriction on the proof of equivalence achieved by
static checkers. On the other hand, this also enables us to verify
arbitrary program transformations. In this work, we support arbi-
trary iteration reordering transformations, irrespective of how the
code is generated to implement them. Specifically, we require the
transformation to not change the total number of dynamic instances
(e.g., N in the figure) of each syntactic statement (e.g., S) or the
operations performed by the statement. This set of supported trans-
formations includes all loop transformations (e.g., loop tiling [55],
index set splitting [30], etc.). Yet, it also includes any possible syn-
tax to implement the reordering, including using non-affine expres-
sions in the generated code, AST-based transformations, etc.

We achieve this by constructing a checker to rewrite each state-
ment in the transformed program by operations to check that state-
ment instance. We illustrate the construction of the checker using
the iterative Seidel example shown in Figure 2. This example better
illustrates the approach than the simpler example in Figure 1(a).

We first statically analyze the affine input (reference) program
to determine the read-after-write (true), write-after-read (anti), and
write-after-write (output) dependences. Each dependence can be
represented as a function (or relation) that takes a statement in-
stance as input and returns the other statement instance associ-

540

1 for t = 0 to T-1:

2 for i = 1 to N-1:

3 for j = 1 to N-1:

4 S1: A[i][j]=A[i-1][j]+A[i][j-1]

Figure 2: Iterative Seidel example based on the language specifica-
tion in Figure 3. T and N are problem size parameters.

ated with the dependence. For example, in Figure 2, consider the
statement instance S1<t=1,i=5,j=7>, denoting the instance of
statement S1 executed at the iteration (t=1,i=5,j=7). This state-
ment instance updates the value previously written at A[5][7]
by S1<t=0,i=5,j=7> (output dependence) and reads values of
A[4][7] and A[5][6] (input dependence).

Now consider the operation executed by an unknown statement
in the transformed program to be verified:

A[8][9] = A[7][9] + A[8][8]

We analyze the array locations accessed by an operation in the
transformed program to map it to a statement instance in the in-
put program. The preceding operation instance can be mapped
to S1<t=0,i=8,j=9>, S1<t=1,i=8,j=9>, etc., in the input pro-
gram. In general, an operation encountered in the transformed pro-
gram can possibly match multiple statement instances in the input
program. Given this relationship, we first try to map this operation
to a statement instance in the input program that has not already
been mapped, and statement instance induced by the mapping sat-
isfies the input program’s dependences.

A transformed program is declared to be equivalent to an input
program if (a) the statement instances in the transformed program
can be mapped in a bijective, or one-to-one, fashion to statement
instances in the input program, and (b) each statement instance
in such a bijection satisfies the same dependences as in the input
program. For arbitrary program transformations, there are numer-
ous ways in which the statement instances of the transformed pro-
gram can be mapped to those of the input program. Enumerating
each mapping to check whether or not it constitutes a dependence-
preserving reordering of the statement instances in the input pro-
gram is prohibitively expensive. We exploit the fact that itera-
tion reordering transformations only change the order in which the
statement instances are executed and not the variables written by a
given statement instance. We also show that this enables us to check
just one mapping to statement instances in the input program.

We can track dependences through the data space in terms of
the data elements accessed by the statement instances. For each
statement instance storing a value in a data element, we use a
shadow variable to store the identity of the corresponding in-
put statement instance. For example, if the preceding operation
is mapped to S1<t=1,i=8,j=9>, the assignment to A[8][9] is
augmented with:

shadow(A[8][9]) = S1<t=1,i=8,j=9>

This information can then be used to check the dependence as
the program is executed. The checker constructed for this particular
statement instance is as follows:

assert shadow(A[8][9]) == S1<t=0,i=8,j=9>

assert shadow(A[7][9]) == S1<t=1,i=7,j=9>

assert shadow(A[8][8]) == S1<t=1,i=8,j=8>

shadow(A[8][9]) = S1<t=1,i=8,j=9>

where NIL is the initial value of all array locations and variables.
We leverage the fundamental property that if the input program

is affine then these true dependences and relationship between
statement instances can be represented in a closed form. Together
with the shadow variables, this affords compact on-the-fly tracking
of the dependences that need to be satisfied. We embed the code
to check the equivalence of traces directly in the transformed pro-
gram. This code can be emitted at compile time because of the input
program’s affine characteristics.

n ∈{M,N, , ..} [ProblemSizeParameters]

v ∈Z [Values]

l ∈{l1, l2, . . . } [LoopIndices]

A ∈{A1, A2, . . . } [ArrayNames]

a ∈ AffineExpr ::= v | l | v × l | a+ a | a− a

i ∈ ArrayIndex ::= a(, a)∗
lb ∈ LowerBound ::= a | max(a(, a)+)

ub ∈ UpperBound ::= a | min(a(, a)+)

ac ∈ AffineCond ::= a > 0 | a < 0 | a == 0 | a! = 0

| ac and ac | ac or ac

s ∈ Stmts ::= A[i] = fe(v | A[i](, v | A[i])∗)
| s; s | if ac : s

| for l = lb to ub : s

p ∈ Programs ::= s

Figure 3: Language for affine loop programs. Indentation-based
scoping (used for readability) is not shown. fe is an expression of
its arguments.

Note that we only perform static analysis on the input program.
Beyond the constraint that the transformed program is an iteration
reordered version of the input program, we do not constrain the
transformed program. We do not need to perform any analysis on
the transformed program. Rather, we only inspect the operations
executed by the transformed program, irrespective of how they are
generated. In this example, the operation A[8][9] = A[7][9] +

A[8][8] could have been generated from any code structure with
the array input expressions being complex non-affine operations
that evaluate to the array index expressions (8,9), (7,9), and
(8,8), respectively.

The determination of the one-to-one correspondence requires
that the input program statement instance can be computed from the
information available in the operations executed by the transformed
program. Additional checks are required to detect errors in the
transformed program caused by omitted or duplicated statements
or operations that do not have a corresponding statement instance
in the input program. We will discuss these details and present
optimizations to reduce the checking overhead.

3. Background

In this section, we present the basic notation that relates to analysis
of affine programs used in the rest of the paper.

To clarify the notation and types of programs we tackle in this
paper, we consider the language for affine programs defined in Fig-
ure 3. While we use this language for discussion, our implemen-
tation handles C programs that conform to this specification. Note
that scalars can be treated as one-dimensional arrays of size 1. One
significant distinction is the use of a comma-separated list of ex-

pressions to represent an array index.1

3.1 Integer Sets Notation

Programs with affine data-flow and static control-flow are called
static control parts (SCoP) [22, 28], roughly defined as a sequence
of statements such that all loop bounds and conditional expressions
are affine functions of enclosing loop iterators and variables that
are constant during the SCoP execution (whose values may be

1 This representation of a tuple without surrounding parenthesis (‘()’ or ‘[]’)
allows us to treat function argument lists, array indices, and loop iterator
values interchangeably.

541

unknown at compile time). Affine programs are represented in
this work using (a union of) convex sets of integer tuples and (a
union of) integer maps. Operations on these structures are readily
available in the ISCC calculator [52], which leverages the Integer
Set Library [51] to provide operations such as union, intersection,
and relation application.

Integer Set The definition of an integer set s is:

s = [p1, ..., pp] → {[i1, ..., im] : c1 ∧ ... ∧ cn}

Where i1, ..., im index the m dimensions of the set (noted ~i);
p1, ..., pp are invariant parameters (noted ~p); and c1, ..., cn are n
Presburger formulae, typically in the form of affine inequalities

defining constraints on the values of~i.
Integer sets are used to precisely capture the set of runtime in-

stances of statements in affine programs. Each statement S is as-

sociated with an iteration vector ~iS with one component per sur-

rounding loop, and the values~iS can take are captured by defining
its iteration space IS . The iteration space of the statement S1 in
Figure 2 is noted IS1

and is:

IS1
= [T,N] → {S1[t, i, j] : 0 ≤ t < T ∧ 0 ≤ i < N ∧ 0 ≤ j < N}

Relation The definition of an integer relation, or map, r : ~i 7→ ~j
is:

r = [p1, ..., pp] → {[i1, ..., im] 7→ [j1, ..., jn] : c1 ∧ ... ∧ co}

Relations are used to describe the set of memory locations
accessed by statements. In polyhedral programs, array subscripts
functions are affine expressions of the loop iterators and param-

eters. We note them F
A,i
S for the i-th access to an array A in a

statement S. For example, the statement instances of S1 that writes

array A[i][j] in Figure 2 has F
A,1
S = (i, j) and can be represented

as:

R
A1

S1
= {S1[t, i, j] 7→ A[i1, j1] : (i1 = i) ∧ (j1 = j)}

We note R
Ai

S for the i-th read reference map to array A in

statement S, and WA
S as a write reference map to A in S.

Applying relations to sets The apply operation is defined as:

(~x ∈ s
′) ⇐⇒ (∃~y ∈ s ∧ (~y 7→ ~x) ∈ r)

where s′ is a new set produced by apply of relation r to set s, which
can be denoted as s′ = r(s).

For instance, the apply operation is used to compute the data
space (set of all memory locations accessed) in a loop nest. For ex-

ample, the write data footprint for array A in Figure 2 is R
A1

S1
(IS1

).

Program execution order A schedule is a relation used to spec-
ify the execution order of all statement instances. It maps points
in the iteration domain to those in an integer set (the set of times-
tamps). As such, statement instances in the iteration domain are
executed following the lexicographic ordering ≺ of their associ-
ated timestamp. ≺ is defined as (a1, . . . , an) ≺ (b1, . . . , bm) iff
there exists an integer 1 ≤ i ≤ min(n,m) s.t. (a1, . . . , ai−1) =
(b1, . . . , bi−1) and ai < bi.

The original program schedule is modeled using 2d + 1 times-
tamps, where d is the maximal nesting depth in the program [28].
For example, the schedule of S1 in Figure 2 is:

SchedS1
= {S1[t, i, j] 7→ [0, t, 0, i, 0, j, 0]}

where each odd dimension of the output space is a scalar dimen-
sion whose value denotes the lexical AST ordering of the loops
surrounding the statement. For statements surrounded by less than
d loops, the even schedule components associated with the missing
loops is set to 0. However, we use a special convention where the

last component of the schedule corresponds to a unique identifica-
tion for the statement (e.g., 1 for S1) instead of the lexical AST
order of the statement in this loop nest.

3.2 Polyhedral Dependences

In the polyhedral model, dependences for affine computations
(such as flow dependence and output dependence) can be precisely
calculated and expressed as relations from a source iteration to a
target iteration in the iteration space [27, 42, 43].

Polyhedral dependences can be obtained using tools such as
ISL [4]. For example, one flow dependence in the example code
in Figure 2 is shown as follows:

Flow = [T,N] → {S1[t, i, j] 7→ S1[t, i, 1 + j] :

0 ≤ t < T ∧ 1 ≤ i < N ∧ 1 ≤ j < N − 1}

The flow relation shows that a flow dependence exists between
iteration (t, i, j) and (t, i, j + 1) for statement S1. The value of
A[i][j] written by statement S1 at iteration (t, i, j) is used later at
iteration (t, i, j + 1) within the iteration space.

Note that we only consider exact dependences, meaning we only
consider the last write of source iteration for any dependence pair
from source to target in write-after-write (WAW or output) and
read-after-write (RAW or flow) dependences.

4. Verifying Transformations on Affine Programs

In this section, we present our approach for verifying that the
transformed program has been obtained by a valid reordering of
the iterations of the input program. This involves identifying a
one-to-one correspondence between the statement instances in the
input and the transformed program, such that, for each statement
instance in the input program, the corresponding statement instance
in the transformed program satisfies the same dependences. In
general, verifying equivalence requires comparing traces of the two
programs to derive a graph isomorphism—an expensive task. We
show that transformations restricted to iteration reordering can be
verified at a much lower cost.

PolyCheck specification The affine specification of a transformed
program, to be used by PolyCheck is provided as follows:

/*@ polycheck start spec

<affine input program>

*/

<transformed program>

/*@ polycheck end

*/
Note that all operations reachable from the segment enclosed in

the transformed program are expected to be available at instrumen-
tation time. In other words, any function that could be transitively
called from <transformed program> in the above code shall be
instrumented.

4.1 Algorithm A: A General Algorithm for all Affine Input
Programs

Our approach to verification combines two stages. First, we analyze
the input affine program to build a series of functions used to ex-
tract properties and assertion values from an executed operation in
the transformed program. Second, we instrument the transformed
program to call these functions for each executed operation, check-
ing if the operation’s runtime properties match the expected values
computed by these functions. In a nutshell, the process is as fol-
lows. Assume the transformed program so far is valid, and an oper-
ation o attempts to write to memory location l. The last valid itera-

tion S<itrv>2 that wrote l is stored in shadow(l). From there, we

2 Throughout the paper, we use multi-character identifiers that end in v, e.g.
itrv, to denote vectors.

542

can determine what should be S<itr2v>, the next iteration writing
to l, by evaluating a function we built via static analyis of the input
program that provides the NextWriter iteration. We can then de-
termine what memory location is accessed by S<itr2v> and using
an analogous process what iteration S<itrXv> was the producing
iteration for each memory location accessed by S<itr2v>. This
information is then checked against the runtime information of o:
the observed shadow value for all its operands and the memory ad-
dresses accessed must all match with the values associated with
S<itr2v>. If any of these values do not match, then o is an invalid
operation, and the transformed program does not match the input
program. If all operations o are valid and every o was matched with
exactly one iteration S<itrv> from the input program, the trans-
formed progam matches the input program.

In the following, we first define the various functions extracted
via static analysis to compute the FirstWriter , NextWriter , etc.,
instances for a memory location in Sec. 4.1.1, before detailing the
runtime checking algorithm in Sec. 4.1.2.

4.1.1 Compile-time analysis of the input program

The first stage of analysis involves producing functions that can be
evaluated at runtime in the tranformed code. These functions use
various integer set/map operations, such as union (∪), computing
the lexicographic minimum (lexmin) and maximum (lexmax), and
application of a map to a set (M(S)).

FirstWriter The function ~t = FirstWriter(A, ~w) computes

which instance ~t is the first one in the input program to write to a
specific memory location ~w for array A. To compute this function,
we proceed by computing for each array A written in the program
a function that returns the timestamp of the first iteration writing to
an arbitrary memory location.

We model an arbitrary memory location in array A as a para-
metric point in a set:

PointA = [~W] → {[~w] : ~w = ~W}

where ~w and ~W have the same dimensionality as the array A (e.g.,
a 2D set for a two-dimensional array). We then express the set of
instances that write to A as a map from the array index accessed to
the iteration accessing it. For array A written by statement S it is:

M
A
S = [~P] → {[~w] 7→ [~i] : WA

S (~i) = ~w ∧~i ∈ IS}

where ~P is the vector of program parameters. Therefore, the times-
tamp associated with the instance writing to an arbitrary but unique
memory location ~w is:

T = SchedS(M
A
S (PointA))

Finally, given S the set of statements in the input program, one
can build the first instance across the whole program accessing a
particular location ~w: FirstWriter(A, ~w) =

lexmin

(

⋃

S∈S

(

SchedS(M
A
S (PointA)

)

)

We remark that the preceding sets and relations, including the
lexmin operation, can be seamlessly computed using, for instance,
the ISCC calculator. The lexmin returned is an expression (typi-
cally a tree of expressions, where leaves are possible lexmin val-
ues and nodes in the tree are conditions on the numerical values of
~w and ~P). To build the function FirstWriter(A,w), we simply
translate this tree of expressions to C code. The process is repeated
for all written arrays in the program, and each is embedded in the
function’s code so the function selects the appropriate lexmin ex-
pression tree to evaluate as a function of the array name considered.

NextWriter The function ~t = NextWriter(~tprev, A, ~w) com-

putes which is the instance ~t in the input program writing to the lo-

cation ~w of A executing immediately after ~tprev wrote to the same
memory location ~w. To build this function, we employ methods
similar to those for FirstWriter . We first model an arbitrary itera-
tion of a program as a parametric point in a set:

Iter1 = [~T] → {[~t] : ~t = ~T}

where ~t and ~T have 2d+1 components, the number of dimensions
of a timestamp (i.e., output dimensions of scheduling functions).

To capture an iteration ~t immediately following another iteration
~tprev , we use a slight extension of the definition of MA

S to add

input dimensions and capture ~tprev as follows:

N
A
S = [~P] → {[~w,~tprev] 7→ [~i] : WA

S (~i) = ~w ∧ ~i ∈ IS1

∧ ~tprev ≺ SchedS(~i)}

Finally NextWriter(~tprev, A, ~w) is built using a similar ex-

pression as for FirstWriter(A, ~W), simply substituting M
A,j
S by

N
A,j
S and PointA by (Iter1, PointA).

WriterBeforeRead ~t = WriterBeforeRead(~tread, A, ~w) com-

putes the instance ~t that last wrote to a location ~w of array A

read by iteration ~tread in the input program. This is essential to
make sure data dependences are preserved in the programs. Writes
must all occur in the input order, and read values must contain
the same value as in the input program when a particular instance
executes. This function is computed in a manner analogous to

NextWriter , except instead of stating~tprev ≺ SchedS(~i) we state

SchedS(~i) ≺ ~tread, and compute the lexmax of the problem in-
stead of the lexmin to have the instance immediately preceding
~tread writing to a location ~w. Note that if A(~w) is an input loca-
tion not yet overwritten by any statement instance (e.g., it is live-in

data), then ~t is set to Init<0>.

LastWriter The function ~t = LastWriter(A, ~w) computes the

instance ~t that is last to write to a memory location ~w in the array
A. This is simply the converse of the FirstWriter function, which
is formulated identically except the lexmax instead of the lexmin

is used to find ~t.

WriteSet and InputSet We conclude by defining two convenience
sets, namely the WriteSet and InputSet, used to initialize the
checking procedure.

The WriteSet is the set of array locations written to by the
input program, we initialize their shadow to NIL. This corresponds
to the data space built from the union of the data spaces induced by
all write references in the program. Its expression, for an array A,
is:

WriteSet(A) =
⋃

S∈S

W
A
S (IS)

The InputSet is the set of data being read before being written,
or being read-only. It is used to initialize the last writing instance to
a default starting value Init<0>. It is assembled by first building
the set of all memory locations being read. For the array A, it is:

ReadSet(A) =
⋃

S∈S

(

⋃

i R
Ai

S (IS)
)

, where i ranges to cover

each read access function to A in S.
We then prune this set from all the memory locations be-

ing written before being read, which is obtained by applying
WriterBeforeRead on each first-read instance per memory lo-
cation, keeping only locations where it returns Init<0>. The set
of first-read instances is computed in a manner analogous to the
FirstWriter , except considering read access functions.

543

4.1.2 Compile-time analysis of the transformed program

We present the notation used in the algorithm in a manner closer
to the AST form that occurs in program analysis. Each notation
that follows can be associated to the notation used in the previous
section for the various functions. For example ~w in A is A[wv].

Notations An array location is denoted by the array label and
index vector (e.g., A[idxv]), where idxv is a tuple of length equal
to the dimensionality of array A.

A statement instance is denoted by the statement label and the
iteration vector (e.g., S<itrv>).

Arrays are indexed using array reference functions. Given an
iteration vector as input, an array reference function returns the
index vector to index into the array. The array reference function
to compute the array index written by statement S is denoted by
S.w(). The array index written by a statement instance S<itrv>

is computed as S.w(itrv).
The list of array reference functions to compute indices used

in read array references in statement S is denoted by S.r. The
array indices read by a statement instance S<itrv> is computed
as S.r[0](itrv), S.r[1](itrv), etc.

The verification algorithm employs shadow state for every array
location of interest. The shadow state associated with location
A[idxv] is denoted by shadow(A[idxv]).

For every operation o in the transformed program, the arrays
written and read by it are noted by o.Aw and the list o.Ar, respec-
tively. The array indices for the writes and reads are denoted by
o.wv and o.rv().

Verification algorithm First, a simple static analysis of the trans-
formed progam is performed to identify each statement that can
write to any array written by the input program. Each opera-
tion performed by these statements is marked to generate run-
time check operations. We note ts(o) as the statement in the
transformed program that generates this operation o. The func-
tion CandidateInputStmts(ts) returns the set of all statements
in the input program whose syntactic structure matches that of ts.
We then analyze and instrument all code reachable from the trans-
formed program segment to be analyzed.

Figure 4 depicts the runtime checking algorithm. For simplicity,
we represent function arguments as an object that contains all of the
necessary parameters to evaluate the functions defined in Sec. 4.1.1.
The WriterBeforeRead is noted RAW.

4.2 Algorithm B: A Version-Number based Algorithm

The algorithm in Figure 4 enables the verification of program trans-
formations made on arbitrary input affine programs. This generality
comes at a runtime overhead cost. For example, functions which
need to be evaluated for each operation, especially NextWriter
and RAW, have been generated at compile time as a solution to a
parametric lexicographic minimum/maximum on a union of sets.
In other words, possibly many if conditionals necessarily need to
be evaluated for each instance. Also, although the space overhead
remains linear in the input dataset size, storing multidimensional
instance vectors in programs nested by d loops requires 2d + 1
integer attributes per memory location accessed in the input pro-
gram. To overcome these limitations, we present a slightly different
technique that requires storing only a single integer per memory lo-
cation and, in most cases, does not require the evaluation of deep
conditionals for each operation. We achieve this by restricting the
class of affine programs handled to those where the iteration vector
of an operation can be computed by solving linear equations using
the index value of the memory locations accessed by the operation.
We also do not store the last instance that have written in this loca-
tion, but instead the number of instances which previously wrote to
this location.

1 @initialize:

2 //executed before starting execution of

transformed program

3 for w in WriteSet:

4 shadow(w) = NIL

5 for i in InputSet:

6 shadow(i) = Init<0>

7
8 def input_statement_instance(o):

9 assert shadow(o.Aw[o.wv]) exists

10 if shadow(o.Aw[o.wv]) == NIL:

11 S<itrv> = FirstWriter(o.Aw[o.wv])

12 else:

13 S<itrv> = NextWriter(shadow(o.Aw[o.xv]),

o.Aw[o.wv])

14 assert S<itrv> exists //valid iteration

15 assert S in CandidateInputStmts(ts(o))

16 return S<itrv>

17
18 @verify(o):

19 //executed for every operation encountered

in the transformed program

20 S<itrv> = input_statement_instance(o)

21 for i in 0 .. |S.r|-1:

22 assert S.r[i](itrv) == o.rv[i]

23 assert RAW(S,i)(itrv) == shadow(o.Ar[i][

o.rv[i]])

24 shadow(o.Aw[o.wv]) = S<itrv>

25
26 @terminate:

27 //executed after execution the transformed

program

28 for w in WriteSet:

29 assert shadow(w) == LastWriter(w)

30 report SUCCESS

Figure 4: Runtime procedure to check every operation encountered
in the transformed program for algorithm A.

Compile-time analysis of the input program The analysis ex-
tracts the WriteSet and InputSet similarly to the general ap-
proach, as well as LB(S), the iteration domain of the statement S
(i.e., IS).

A VersionNumber(S) function is built such that, given a in-
stance S<itrv> of statement S, it computes how many instances
previously wrote to this location in the input program and re-
turns this value+1. This is computed by forming the set of such
an instance using similar concepts as the general algorithm and
building a counting polynomial for the resulting parametric set.
We use Barvinok’s techique [53] available in ISCC. The function
RAWv(S,i) returns the VersionNumber of RAW(S,i).

The function NumWrites(w) returns the number of statement
instances that write to array location w in the input program by
building the counting polynomial on WriteSet(w).

The function LIN(S) produces a list of linear functions that
consists of:

• Affine array reference functions S.w and each function in S.r

• For all i: RAWv(S,i) if RAWv(S,i) is affine

• VersionNumber(S) if VersionNumber(S) is affine.

We ensure that the matrix associated with LIN(S) is full rank (rank
equal to loop nest depth of statement S) for all S. If not, the version-
number based scheme cannot be used. Instead, the algorithm shown
in Figure 4 must be employed.

Finally, the function RHS(S) returns a vector of loop indices,
expressed in terms of array indices and version numbers, that forms

544

Table 1: FirstWriter to array A in iterative Seidel

0 1 2 3
0 – – – –
1 – S[0,1,1] S[0,1,2] S[0,1,3]
2 – S[0,2,1] S[0,2,2] S[0,2,3]
3 – S[0,3,1] S[0,3,2] S[0,3,3]

the right-hand side of the equation to solve for x in LIN(S).xv =

RHS(S).

Verification algorithm The compile-time analysis of the trans-
formed program is performed in a manner identical to the general
algorithm. Figure 5 gives the pseudocode that instruments the trans-
formed program for this scheme.

1 @initialize:

2 //executed before starting execution of

transformed program

3 for w in WriteSet:

4 shadow(w) = 0

5 for i in InputSet:

6 shadow(i) = 0

7
8 def input_statement_instance(o):

9 assert shadow(o.Aw[o.wv]) exists #writing

to a location in WriteSet

10 for S in CandidateInputStmts(ts(o)):

11 Solve for x in LIN(S) . xv = RHS(S)(o.w,

o.rv[1], ..) s.t. xv in LB(S)

12 if xv is found:

13 //check below is redundant if

VersionNumber(S) is a linear function

14 if VersionNumber(S)(xv)==shadow(o.Aw[o

.wv]):

15 return S<xv>

16 assert false //does not match any input

statement instance

17
18 @verify(o):

19 //executed for every operation encountered

in the transformed program

20 S<itr> = input_statement_instance(o)

21 for i in 0 .. |S.r|-1:

22 if RAWv(S,i) not in LIN(S): //non-linear

component

23 assert shadow(o.Ar[i][o.rv[i]]) exists

24 assert RAWv(S,i)(itr) == shadow(o.Ar[i

][o.rv[i]])

25 shadow(o.Aw[o.wv]) += 1

26
27 @terminate:

28 //executed after execution the transformed

program

29 for w in WriteSet:

30 assert shadow(w) == NumWrites(w)

31 report SUCCESS

Figure 5: Runtime procedure to check every operation encountered
in the transformed program for algorithm B.

Theorem 1. Algorithm A (resp. B) terminates without error if and
only if the operations that were verified in the transformed program
execution correspond to a dependence-preserving reordering of the
statement instances in the input program.

Proof. Proof is presented in [10].

1 seidel_rec(t,ilo,ihi,jlo,jhi,T,N,A[N][N]):

2 if ilo>ihi || jlo>jhi: return

3 if ilo==ihi && jlo==jhi:

4 A[ilo,jlo] = A[ilo-1,jlo] + A[ilo,jlo-1]

5 else:

6 seidel_rec(t,ilo,⌊ ilo+ihi
2

⌋,
7 jlo,⌊ jlo+jhi

2
⌋,T,N,A) //Top-Left

8 seidel_rec(t,ilo,⌊ ilo+ihi
2

⌋,
9 ⌊ jlo+jhi

2
⌋+ 1,jhi,T,N,A) //Top-Right

10 seidel_rec(t,⌊ ilo+ihi
2

⌋+ 1,ihi,

11 jlo,⌊ jlo+jhi
2

⌋,T,N,A) //Bottom-Left

12 seidel_rec(t,⌊ ilo+ihi
2

⌋+ 1,ihi,

13 ⌊ jlo+jhi
2

⌋+ 1,jhi,T,N,A) //Bottom-Right

14 if ilo==1 && ihi==N-1 && jlo==1 && jhi==N

-1 && t<T:

15 seidel_rec(t+1,ilo,ihi,jlo,jhi,T,N,A)

// Next time step

Figure 6: Recursive implementation of Seidel. Invoked as
seidel rec(0,1,3,1,3,2,4,A).

4.3 Illustrative Example: Seidel

We provide an intuition of the algorithms’ operation using the Sei-
del example. The key idea behind the developed approach (com-
mon to both Algorithms A and B) is to perform on-the-fly matching
of each operation (executed statement instance) of the transformed
program being checked with some statement instance in the execu-
tion of the input affine program. The test program uses a shadow
variable for each data variable, and as each operation of the tested
program is successfully matched with a statement instance in the
input program, the information is stored in the shadow variable for
the data element written by the operation. The stored information
either directly (Algorithm A) or indirectly (Algorithm B) enables
identification of the matched statement instance in the input pro-
gram’s execution. If the on-the-fly matching process succeeds, it
essentially identifies a valid dependence-preserving bijection be-
tween the input program’s statement instances and the sequence of
operations executed by the transformed program. In the dynamic
matching process, if we are unable to successfully match any oper-
ation of the transformed program being checked, it means there is
an error in the transformed program: its sequence of operations is
provably not equivalent to any dependence-preserving reordering
of the input program’s statement instances.

We use an example to illustrate the verification approach. Fig-
ure 2 shows code for a 2D iterative stencil computation. The
code sweeps through a 2D array A, row by row, updating ele-
ment A[i][j] using the values of two neighboring elements,
A[i-1][j] and A[i][j-1] (inner loops over i,j). The sweep
over the 2D array is repeated for multiple time steps (outermost t
loop). Figure 6 shows recursive code that performs the same com-
putation. It splits the spatial domain of the sweep into four quad-
rants and recursively invokes sweeps on them, in the order top-left,
top-right, bottom-left, and bottom-right. The base case performs
the stencil operation on a single element.

Table 2 shows the sequence of 18 statement instances for the
execution of the iterative Seidel code for N=4,T=2. For each state-
ment instance, we see the written element of A, the two read el-
ements of A, along with some additional information about data
dependences that can be computed in a straightforward way in a
polyhedral compiler framework for any affine program: 1) the lat-
est preceding statement instance (PrevW) that wrote to any given
data element, 2) the earliest future statement instance (NextW) that
will write to any given data element. Shadow variables for input

545

Table 2: Statement instances executed by iterative Seidel and re-
lated relations

Stmt Write NextW Read1 PrevW Read2 PrevW

S<0,1,1> A[1,1] S<1,1,1> A[0,1] – A[1,0] –
S<0,1,2> A[1,2] S<1,1,2> A[0,2] – A[1,1] S<0,1,1>
S<0,1,3> A[1,3] S<1,1,3> A[0,3] – A[1,2] S<0,1,2>
S<0,2,1> A[2,1] S<1,2,1> A[1,1] S<0,1,1> A[2,0] –
S<0,2,2> A[2,2] S<1,2,2> A[1,2] S<0,1,2> A[2,1] S<0,2,1>
S<0,2,3> A[2,3] S<1,2,3> A[1,3] S<0,1,3> A[2,2] S<0,2,2>
S<0,3,1> A[3,1] S<1,3,1> A[2,1] S<0,2,1> A[3,0] –
S<0,3,2> A[3,2] S<1,3,2> A[2,2] S<0,2,2> A[3,1] S<0,3,1>
S<0,3,3> A[3,3] S<1,3,3> A[2,3] S<0,2,3> A[3,2] S<0,3,2>
S<1,1,1> A[1,1] – A[0,1] – A[1,0] –
S<1,1,2> A[1,2] – A[0,2] – A[1,1] S<1,1,1>
S<1,1,3> A[1,3] – A[0,3] – A[1,2] S<1,1,2>
S<1,2,1> A[2,1] – A[1,1] S<1,1,1> A[2,0] –
S<1,2,2> A[2,2] – A[1,2] S<1,1,2> A[2,1] S<1,2,1>
S<1,2,3> A[2,3] – A[1,3] S<1,1,3> A[2,2] S<1,2,2>
S<1,3,1> A[3,1] – A[2,1] S<1,2,1> A[3,0] –
S<1,3,2> A[3,2] – A[2,2] S<1,2,2> A[3,1] S<1,3,1>
S<1,3,3> A[3,3] – A[2,3] S<1,2,3> A[3,2] S<1,3,2>

and output data elements before any assignment are both shown
as null (‘–’). Consider, for example, the two statement instances
that write to A[2][1]: S<0,2,1> and S<1,2,1>. In each of the
two statement instances, the read data elements are A[1][1] and
A[2][0]. Of these two, A[2][0] is a boundary element that is not
written within the execution of the code. Therefore, the “previous
writer” is null. However, A[1][1] is modified in the code by state-
ment instances S<0,1,1> and S<1,1,1>. The table row for state-
ment instance S<0,2,1> lists S<0,1,1> as the previous writer of
the read data element A[1][1], while the row for S<1,2,1> lists
S<1,1,1> as the previous writer of A[1][1]. The next writer for
the written data element A[2][1] is S<1,2,1> for statement in-
stance S<0,2,1> and null for statement instance S<1,2,1>. Ta-
ble 1 displays the first statement instance that writes into each ele-
ment of array A. The top and left boundary elements are only read
but not written, so they have null as their “first writer.”

Table 3 shows the sequence of 18 operations executed by the
checker for the recursive Seidel code. The table entries include the
read and written elements of A for each instance, along with the
values of the shadow variables associated with each data element.
The shadow variables are all initialized to null. Consider the first
operation executed by the recursive version: it writes into A[1][1],
whose shadow is currently null. The first writer of A[1][1] in the
input program is determined (shown in Table 1, but actually dynam-
ically generated, as shown later) to be S<0,1,1>. Thus, as long as
the operands and their previous writers also match, this operation
can get matched with that statement instance of the input program.
The previous writers of the operands A[0][1] and A[1][0] for
S<0,1,1> are both null, matching the null shadow(A[0][1]) and
shadow(A[1][0]) in the checker program for the recursive ver-
sion. Shadow(A[1][1]) is set to the successfully matched input
program statement instance S<0,1,1>. Next, consider the second
operation in the execution of the recursive version that writes into
A[1][1]. To match this operation to a statement instance of the
input program, the shadow variable value S<0,1,1> is used, and
the next-writer in the input program is determined to be S<1,1,1>.
The read data elements and their previous writers (null) match the
shadow variables in the executing checker program, implying a
match. In a similar manner, all operations in the recursive execu-
tion can be matched one-to-one with a statement instance of the
iterative version.

Table 3: Sequence of operations for recursive Seidel; “Sdw” abbre-
viates shadow in the column headers

Write Sdw old Sdw new Read 1 Shadow Read 2 Shadow
/Match

A[1,1] – S<0,1,1> A[0,1] – A[1,0] –
A[1,2] – S<0,1,2> A[0,2] – A[1,1] S<0,1,1>
A[2,1] – S<0,2,1> A[1,1] S<0,1,1> A[2,0] –
A[2,2] – S<0,2,2> A[1,2] S<0,1,2> A[2,1] S<0,2,1>
A[1,3] – S<0,1,3> A[0,3] – A[1,2] S<0,1,2>
A[2,3] – S<0,2,3> A[1,3] S<0,1,3> A[2,2] S<0,2,2>
A[3,1] – S<0,3,1> A[2,1] S<0,2,1> A[3,0] –
A[3,2] – S<0,3,2> A[2,2] S<0,2,2> A[3,1] S<0,3,1>
A[3,3] – S<0,3,3> A[2,3] S<0,2,3> A[3,2] S<0,3,2>
A[1,1] S<0,1,1> S<1,1,1> A[0,1] – A[1,0] –
A[1,2] S<0,1,2> S<1,1,2> A[0,2] – A[1,1] S<1,1,1>
A[2,1] S<0,2,1> S<1,2,1> A[1,1] S<1,1,1> A[2,0] –
A[2,2] S<0,2,2> S<1,2,2> A[1,2] S<1,1,2> A[2,1] S<1,2,1>
A[1,3] S<0,1,3> S<1,1,3> A[0,3] – A[1,2] S<1,1,2>
A[2,3] S<0,2,3> S<1,2,3> A[1,3] S<1,1,3> A[2,2] S<1,2,2>
A[3,1] S<0,3,1> S<1,3,1> A[2,1] S<1,2,1> A[3,0] –
A[3,2] S<0,3,2> S<1,3,2> A[2,2] S<1,2,2> A[3,1] S<1,3,1>
A[3,3] S<0,3,3> S<1,3,3> A[2,3] S<1,2,3> A[3,2] S<1,3,2>

Table 4: Sample operations for recursive Seidel with error; “Sdw”
abbreviates shadow in the column headers

Write Sdw old Sdw new Read 1 Shadow Read 2 Shadow
/Match

A[1,1] – S<0,1,1> A[0,1] – A[1,0] –
A[1,2] – S<0,1,2> A[0,2] – A[1,1] S<0,1,1>
A[2,2] – S<0,2,2> A[1,2] S<0,1,2> A[2,1] –
A[2,1] – S<0,2,1> A[1,1] S<0,1,1> A[2,0] –

To illustrate the verification process further, consider what hap-
pens when the tested program is not equivalent to the input pro-
gram. For example, for the recursive Seidel version, assume that
the last two of the four recursive calls to top-left, top-right, bottom-
left, and bottom-right got swapped by mistake, i.e., the sequence
of calls instead becomes top-left, top-right, bottom-right, bottom-
left. Table 4 shows the first few operations executed, along with
shadow variable information. The on-the-fly matching is success-
ful for the first two operations (writing into A[1][1] and A[1][2],
respectively) but will fail for the third operation, which writes
into A[2][2]. Because the shadow variable has a null value, the
matching process will use first-writer information for A[2][2] and
attempt a match with the iterative program’s statement instance
S<0,2,2>. Of the two read data elements, we get a match for
A[1][2] (the previous writer in the iterative program statement
instance, S<0,1,2>, matches the shadow variable in the test pro-
gram) but not for A[2][1]. The shadow variable for A[2][1] is
null as A[2][1] has not yet been written in the test program so far.
However, the previous writer for A[2][1] in the matched state-
ment instance is S<0,2,1>. This mismatch means the test program
cannot be equivalent to the input program.

Figures 7 and 8 show the checker code generated for recursive
Seidel code for using Algorithms A and B, respectively. Figure 7
first shows initialization code that sets all shadow variables to null
followed by the verification code inserted after the statement in line
4 of the recursive Seidel code (Figure 6)—the operation performed
at the base case of the recursion. The checker code encodes the pre-
viously described matching process using the example traces. Fi-
nally, an epilog code verifies that all operations were performed by
the transformed program. This is done by ensuring the final shadow

546

1 @initialize: //initialize shadow variables

2 for (i,j) in (0,0) to (N-1,N-1):

3 shadow(A[i][j]) = NIL

4 @verify: //inserted after line 4 in

seidel_rec

5 i = ilo

6 j = jlo

7 assert i-1==ilo-1 //check 1st index and

8 assert j==jlo //2nd index in A[ilo-1][

jlo]

9 assert i==ilo //check 1st index and

10 assert j-1==jlo-1 //2nd index in A[ilo][

jlo-1]

11 if shadow(A[i][j])==NIL: // Write

12 assert FirstWriter(A[i][j])==S<t,i,j>

13 else:

14 assert shadow(A[i][j])==S<t-1,i,j>

15 if shadow(A[i-1][j])!=NIL: // Read

16 assert shadow(A[i-1][j])==S<t,i-1,j>

17 if shadow(A[i][j-1])!=NIL: // Read

18 assert shadow(A[i][j-1])==S<t,i,j-1>

19 shadow(A[i][j]) = S<t,i,j>

20 @terminate: //epilog to ensure completeness

21 for (i,j) in (1,1) to (N-1,N-1):

22 assert shadow(A[i][j]) == S<T-1,i,j>

Figure 7: The checker code inserted by Algorithm A after line 4
in the recursive Seidel implementation (Figure 6). Note that the
compiler can optimize away the first four assert statements.

1 @initialize://initialize shadow variables

2 for (i,j) in (0,0) to (N-1,N-1):

3 shadow(A[i][j]) = 0

4 @verify: //inserted after line 4 in

seidel_rec

5 Determine (t,i,j) that satisfy the

following inequalities and equalities:

6 0<=t<T and 0<j<N and 0<j<N //loop bounds

7 i-1=ilo-1 //check 1st index and

8 j =jlo //2nd index in A[ilo-1][jlo]

9 i =ilo //check 1st index and

10 j-1=jlo-1 //2nd index in A[ilo][jlo-1]

11 //shadow values

12 shadow(A[i][j]) =(i>0 && j>0) ? t : 0

13 shadow(A[i-1][j])=(i>1 && j>0) ? t+1 : 0

14 shadow(A[i][j-1])=(i>0 && j>1) ? t+1 : 0

15 if no (t,i,j) found: report error

16 shadow(A[i][j]) += 1

17 @terminate://epilog to ensure completeness

18 for (i,j) in (1,1) to (N-1,N-1):

19 assert shadow(A[i][j]) == T

Figure 8: The checker code inserted by Algorithm B after line 4 in
the recursive Seidel implementation (Figure 6).

variables match the analytically computable last writers for the in-
put affine program. Figure 8 shows the checker code for using the
optimized approach of Algorithm B, which is applicable for this
example. Instead of keeping full details of matched statement in-
stances in shadow variables, a compact version counter is stored in
each shadow variable, and the matching process involves compar-
ing the values in the version counters with analytically computable
write counts for each data element in the affine input program.

4.4 Time and Space Complexity

For each operation to be checked by the transformed program, the
number of actions taken by the checker is proportional to the num-
ber of array references and loop nesting depth of each statement.

Specifically, computing the corresponding statement instance re-
quires time proportional to the loop nesting depth. Checking each
array reference requires computing the array index from an itera-
tor value with the cost proportional to that of computing the array
references in the input program. Note that LIN(S) is known when
analyzing the input affine program. Rather than solve the system of
equations at runtime, we compute the (pseudo-)inverse for LIN(S)
at compile time and only perform a matrix-vector product at run-
time. In general, the cost of checking each operation using Algo-
rithm A is proportional to the loop nesting depth. Given the loop
nesting depth is usually small, the checker cost is on the same or-
der as executing the input program. Algorithm B might undertake
several mappings for each operation—in the worst case, attempting
a mapping with every statement in the input program. Therefore,
the worst case cost of checking each operation using Algorithm B
is proportional to the loop nesting depth times the number of state-
ments in the input program. We only employ Algorithm B when
the number of candidate input statements for any given statement
in the transformed program is small.

The operations in the transformed program are processed in a
streaming fashion as they are generated with no storage of past
operations. The only significant space required by the checker is
the shadow variable associated with each location read and written
by the input program. Each shadow variable holds a constant-sized
object (statement instance object or version number). Therefore,
the algorithm’s total space complexity is the same as that of the
input affine program, and is independent of the number of statement
instances executed by the input or the transformed program.

5. Scope of Applicability, Enhancements, and

Limitations

The following describes a few key performance enhancements for
the PolyCheck implementation.

Optimized checking of full tiles As discussed, we add several
instructions for each statement in the transformed program. This
overhead can be significantly improved for a common class of
transformed programs. Specifically, tiled programs group statement
instances into tiles to improve data locality. While the bounds for
these tiles can be constants or influenced by a tile-size parameter,
the code within a tile itself is often an affine program. In such sce-
narios, we employ index set splitting to isolate tiles that depend
only on linear combinations of problem- and tile-size parameters.
We outline such tiles and statically analyze them to identify the in-
coming definitions—array locations last written elsewhere in the
program and read within this tile. Statements with these definitions
are verified in full. Other statements that only read array locations
written by statement instances within the same tile (intra-tile de-
pendences) are statically verified. Each statement is replaced with
an increment of the version number of the array element written by
that statement. This ensures that version counts are still maintained
to enable continued verification of the remaining program.

Delayed detection and vectorization If the termination and error
reporting criteria can be relaxed, the verification performance can
be improved. Checking and aborting on each verification introduces
several branches and leads to poor performance. Most checks com-
pare the expected version number for the input of a dependence
with the version number observed. Thus, we replace the check:

assert a==b with checksum |= (aˆb)

At the end of the program, we verify the checksum:
assert checksum==0

At the end of the iteration, a non-zero checksum value indicates
detection of an error in the transformed program. The bitwise or
operation ensures that any error detected (using the xor operation)

547

results in a bit being set and never subsequently unset. Therefore,
the checksum is exact in that any error detected during the checker
execution is eventually reported. When the checks are enclosed in
loops with statically known loop bounds in the transformed code,
we place the scalar checksum variable with an array to make the
code amenable to vectorization.

Localizing bugs In addition to detecting errors, PolyCheck strives
to isolate the offending statement instance and report the reason
for failed verification. For each offending operation, we report the
operation and information on the statement instance of the trans-
formed program. When a given operation cannot be mapped to a
dependence-preserving statement instance s in the input program
that writes to the same location, we attempt to find alternative pos-
sible mappings for the same operation to other non-dependence-
preserving statement instances. If the operation maps to a state-
ment instance s′ that lexicographically precedes s, we report the
offending operation as a duplicate of an earlier operation generated
by s. If the operation maps to a statement instance s′ that lexico-
graphically follows s, we report the offending operation as having
executed too soon, violating a write-after-write dependence. When
no valid mapping can be found for any version number, we report
it as an invalid operation. When an operation is found to violate a
dependence, we report the observed and anticipated statement in-
stances in the input program. This allows the programmer to locate
the offending statement instance in the transformed program, the
corresponding statements in the input program, and the cause for
the failed verification.

Problem-size parameters When the array access functions de-
pend on problem-size parameters, information about them must be
extracted from the transformed program as well. We support two
approaches. First, the user can provide the problem size as a sim-
ple annotation to the verifier. This is expected to be one or a small
number of annotations, one per parameter, and is not an onerous
requirement. Second, we can treat the parameters as variables and
solve for them as we solve for the loop indices. Assuming that there
are sufficient linearly independent constraints involving the param-
eter of interest, we compute the parameters the first time they are
encountered. In subsequent checks, the discovered parameters are
treated as constants. In general, problem-size parameters can be
discovered by relating properties of a full polyhedron—number of
integer points, last write to a given location, extremes on the array
locations read/written, etc.—and relating them to the values ob-
served when running the transformed program.

While PolyCheck can handle numerous program variants, it is
still restricted to iteration reordering transformations. The scope
of transformations and programs that PolyCheck can handle is
discussed further in the following.

Aliasing Affine dependence analysis assumes that two locations
A1[itr1v] and A2[itr2v] are identical (refer to the same loca-
tion) only if A1=A2 and itr1v=itr2v. This imposes a restriction
on the input program’s analysis. Therefore, PolyCheck cannot be
employed when aliasing of arrays might occur.

Parallelization As described, PolyCheck assumes a sequential
input program and verifies transformations that maintain depen-
dences in this sequential order. However, if the transformed code
is a parallel data-race-free program, the checker augmented pro-
gram is also data-race-free and can be executed in parallel. Specif-
ically, where the transformed program accesses an array location,
the checker accesses the location’s shadow. Verifying a parallel pro-
gram then translates to verifying the program meets PolyCheck’s
check and is data-race free. Note that data-race freedom might be
schedule-specific [23, 45] or schedule-independent [16, 44]. Poly-
Check’s verification is only valid for the schedules shown to be
data-race free.

Data space transformations PolyCheck relies on the fact that
iteration reordering transformations still maintain the operation
order with respect to the data space. Data space transformations
that change the array index expressions (e.g., row/column-major
to blocked or recursive storage) can lead to valid corresponding
statement instances being flagged as in error. However, data space
transformations that do not alter the array index expressions (e.g.,
padding) do not interfere with the checker.

Scalar transformations The current design of PolyCheck can-
not handle scalar and basic-block-level transformations. However,
some transformations are more difficult than others. Transforma-
tions such as common sub-expression elimination and register
tiling potentially can be handled by tracking the operation tree
representing each assignment. The operation tree represents the set
of expressions on array locations in the InputSet and WriteSet

that produce the current value. When a value is assigned to an
element in the WriteSet, the entire operation tree is checked.
Conversely, some transformations, such as constant propagation,
change the operations sufficiently to interfere with the construction
of the bijection just by tracking their data space effects.

6. Experimental Evaluation

Implementation details PolyCheck first analyzes an input affine
program to compute the check codes. This stage was implemented
using ISL-0.12 [4] (with barvinok-0.36 and pet-0.04), an integer set
library for the polyhedral model, and using the LLVM/Clang-3.4
compiler infrastructure [5]. ISL [51] performs dependence analy-
sis of the source program to generate dependency relations, and the
algorithms described in previous sections are implemented to cal-
culate the correct checker for each dependency relation. Then Poly-
Check inserts the checker codes for each target statement by ana-
lyzing the transformed program to check then performs code gen-
eration and outputs the checker-inserted program to enable equiva-
lence checking.

6.1 Evaluation Using the PoCC Polyhedral Compiler

The following is a detailed evaluation of PolyCheck, discussing
the coverage and checking of several compiler optimization passes
from the PoCC polyhedral research compiler [7].

Benchmarks PolyCheck currently requires the input program to
have a static control-flow and use only affine expressions of sur-
rounding loop iterators and program parameters in the loop bounds
and array expressions. The PolyBench/C test suite gathers a collec-
tion of programs meeting these requirements [8]. Table 5 displays
the various computation codes that were evaluated. We used the
large dataset size provided.

Table 5: Benchmarks in evaluation using PoCC

Benchmark Description

gemm Matrix-multiply C=alpha.A.B+beta.C

gemver Vector Multiplication and Matrix Addition

lu LU decomposition

bicg BiCG Sub Kernel of BiCGStab Linear Solver

correlation Correlation matrix Computation

covariance Covariance matrix Computation

jacobi-2d-imper 2D Jacobi stencil computation

seidel-2d 2D Seidel stencil computation

fdtd-2d 2D Finite Different Time Domain Kernel

reg detect Edge detection

doitgen Multiresolution analysis kernel (MADNESS)

548

Tools and setup All benchmark transformations used in evalua-
tion are performed by PoCC-1.2 [7]. To perform comparison ex-
periments with state of the art, we consider the integer set analysis
framework (ISA-0.13) [3], a static equivalence checking tool for
affine programs using a widening approach.

All running time experiments are performed on Intel Xeon E5-
2650 processors at frequency 2.60 GHz with 32 KB L1 cache.
The programs are all compiled with GCC-4.8.1 compiler with -O3
optimization. The reported running time is the average of five runs.

6.1.1 Compiler Passes Considered

A polyhedral compiler contains numerous passes, including ex-
tracting the polyhedral representation (scop extraction), perform-
ing array data-flow analysis (dependence computation), finding an
optimized schedule for the program operations (scheduling), and
implementing the new schedule as a new C program (code gener-
ation). Each of these stages involves several external libraries and
possibly tens of thousands of lines of codes. In addition, for better
performance numerous complementary AST-based transformations
may be performed after code generation, such as unrolling/register-
tiling, loop bound optimization, or full tile separation. PoCC [7] im-
plements each of these, and we selected several critical pass com-
binations to demonstrate our approach.

passthru This configuration performs only SCoP extraction (us-
ing the Clan [1] pass), converts the program to its internal polyhe-
dral representation (ScopLib), does not perform any optimization,
and generates back a loop-based code implementing the original
schedule (using the CLooG [13] pass) that is converted to PoCC’s
AST representation (PAST) and pretty-printed to a C program. The
generated code is an affine program.

data locality This configuration includes all stages of passthru,
adding polyhedral data dependence analysis (using the Candl [21]
pass) and computation of an optimized schedule of operations
to improve temporal data locality and coarse-grain parallelization
(using the Pluto algorithm [20]). The generated code is an affine
program.

fixed tiling This configuration includes all stages of data local-
ity, adding a modification of the polyhedral representation of state-
ments to implement iteration tiling (a.k.a. loop blocking) whenever
possible (using the Pluto [20] pass). Tile sizes are constants pro-
vided to the compiler, and the code generation tool attempts to op-
timize the code structure using the tile size information. The gen-
erated code is an affine program.

AST-based unrolling This configuration includes all stages of
fixed tiling and unrolls all innermost loops by four, generating
an epilog loop to cope with parametric loop bounds if they are
not a perfect multiplier of the unroll factor. It stresses the PAST
optimizers in PoCC—the AST-based backend optimizers. While
the generated code is semantically an affine program, the generated
code structure can challenge SCoP extractors in recovering the
entire program as a single affine region.

AST-based bound optimization This configuration includes all
stages of fixed tiling and performs aggressive loop bound hoisting
and simplification, replacing the cascading min/max expressions
generated by CLooG for conjunctions of inequalities by a tree of
evaluation [56]. While the generated code is still semantically an
affine program, recovering the loop bounds expressions roughly re-
quires reverse engineering the optimizations in the SCoP extractor.

parametric tiling This configuration includes all stages of data
locality, adding the generation of iteration tiling using parametric
tile sizes (using the Ptile [12] pass). That is, the generated code
supports arbitrary tile sizes and selecting the tile size at runtime.

Because non-affine expressions involving iterators multiplied with
parameters (tile sizes) are needed, the generated code is not an
affine program,

full tile separation This configuration includes all stages of para-
metric tiling, adding an AST-based post-processing to separate par-
tial tiles from full tiles in the code structure (using the Ptile [12]
pass). The generated code is not an affine program.

6.1.2 Results Overview

Table 6 compares the coverage of PolyCheck and ISA [54], the
state-of-the-art equivalence checker tool for affine programs. Log-
ically ISA cannot handle transformed programs that are not affine,
such as the parametric tiling cases. ISA is not applicable (N/A)
for those. ISA uses the Polyhedral Extraction Tool (PET) to au-
tomatically detect affine regions, implementing a powerful SCoP
extractor on top of Clang. However, both the AST-based transfor-
mations from PoCC evaluated were not handled by the current im-
plementation of the tool (reported as “not supported”, N/S). While
we believe it is possible to improve the implementation of ISA’s
SCoP extractor to handle these cases as the generated code still is
semantically an affine program, this behavior reinforces the need
for a verification tool that is agnostic to how the code has been
transformed and generated. PolyCheck fulfills this role and for all
optimizations tested can successfully verify equivalence (for cor-
rect optimizations) and find bugs (for bugs randomly inserted in
the generated code).

Table 6: Summary of tool coverage (PoCC evaluation)

Optimization PolyCheck ISA 0.13

passthru
√ √

data locality
√ √

fixed tiling
√ √

AST-based unrolling
√

N/S

AST-based bound optimization
√

N/S

parametric tiling
√

N/A

full tile separation
√

N/A

We have verified the optimizations applied using PoCC for all of
the benchmarks listed in Table 5. For all cases where ISA could be
applied, both PolyCheck and ISA provide the same positive answer
regarding the equivalence between the original and transformed
codes. For all other cases where only PolyCheck could be applied,
it also reported equivalence between the original and transformed
codes. In other words, we have shown the absence of iteration
reordering bugs for these test cases in the generated codes.

6.1.3 Finding Bugs in the Generated Codes

To further demonstrate the power of our approach, we emulated
bugs in the software by randomly introducing problems in the
transformed code (shown in Table 7). Often, bugs translate into an
immediate effect of memory corruption (segmentation fault), which
usually has visible effects to the user. PoCC already implements
a checker that encapsulates all memory references in a wrapper
function to detect out-of-bound memory accesses. Here, we assume
such a test has already passed. We designed pernicious bugs that do
not lead to segmentation fault and that could be easily missed by
classical testing procedures that check the bit-by-bit equivalence of
the produced outputs by the reference and transformed versions.
Indeed, in this case, an open problem is to find datasets that will
trigger visible differences in the produced output. In contrast, our
approach does not require any reasoning on the input data because
we track the satisfaction of data dependences and not the result of
the computation performed.

549

Table 7: Summary of bugs tested (PoCC evaluation)

Bug Description

loop bound decrease by 1 some loop upper bound

array access divide by 2 some array subscript

permutation interchange two non-permutable loops

code motion move around some loop nest

A bug has been introduced randomly in each transformed pro-
gram, for all benchmarks, for both loop bounds and array accesses.
For the permutation and code motion, we manually modified the
transformed program to introduce a change of semantics when ap-
plicable. For some benchmarks, all loop permutations are valid
(e.g., dgemm), so no loop permutation bug can be created.

6.1.4 Discussions

Verifying polyhedral transformations Loop transformations, es-
pecially iteration reordering ones, are not exclusive to polyhedral
compilers. Most compilers implementing some loop transforma-
tions will support loop unrolling, interchange, fusion, distribution,
and tiling (when possible). When the generated code is a purely
affine program, both PolyCheck and ISA can successfully deter-
mine the correctness of the transformed program, given the input
one. However, the execution time of the two techniques can differ
vastly. For ISA, it can prove equivalence extremely quickly, espe-
cially on simple programs—in much less than a second. On the
other hand, it is at the mercy of polyhedral analysis complexity,
which is NP-complete in general. That is, some particular codes
could end up taking hours or GB of space to check [54]. In con-
trast, our approach has a sort of predictable time to terminate: on
the order of the time needed for the transformed code to run on a
machine, irrespective of the transformation complexity.3 Still, this
time depends on the problem size used.

By definition, polyhedral programs considered have a static
control-flow, so it is not necessary to test various datasets of the
same size to conclude equivalence with PolyCheck for the scope
of bugs it can find. This is in contrast to classical testing, where
the output produced by the transformed code is compared bit by
bit to the output of a gold, original version. In this case, even
for polyhedral programs, the dataset has a fundamental impact on
the output values (think about testing dgemm by multiplying 0-
filled matrices). We claim PolyCheck is suited to accelerate and
even replace such testing procedures because of its insensitivity to
dataset values.

Verifying polyhedral and AST transformations It is widely ac-
cepted that affine iteration reordering transformations alone are not
enough to achieve the best performance. That is, practical polyhe-
dral compilers must complement affine transformations with AST-
based transformations for best performance. Shirako et al. recently
showed an example of such integration in PoCC [48]. Our ap-
proach is robust to complementary transformations implemented
at the AST level, as shown with the unrolling experiments. One in-
teresting observation was made in regard to ISA not being able to
handle the unrolled code. While the code is still semantically affine,
the way it was syntactically generated challenged the ISA SCoP ex-
tractor. Clearly, this is not indicative of a limitation of the ISA algo-
rithm/method, merely one of a tool to extract polyhedral represen-
tation. Nevertheless, it shows the advantage in having a framework
that operates independent of how the code is actually generated.
Notably, PolyCheck will not require any update or change for any
new optimization applied on affine codes.

3 Assuming there is no infinite loop in the generated program.

Verifying non-affine transformations Non-affine transforma-
tions of affine programs must be properly anticipated for. Exist-
ing optimizations, such as parametric tiling, already generate non-
affine code and cannot be checked by tools such as ISA. PolyCheck
seamlessly handles such codes. The optimization on loop bounds
has proven to be another challenge for SCoP extraction in PET.
However, this time, the optimization’s complexity makes it nearly
impossible to create a canonical affine representation of the code
at SCoP extraction time without actually reverse-engineering the
optimization. To that extent, it can almost be considered as a non-
affine transformation, yet there is a compelling need to verify its
correctness. Going further, many other code transformations, such
as recursive decomposition for cache-oblivious algorithms, lead to
non-affine programs, even if the input is an affine program. We
believe PolyCheck perfectly complements tools like ISA by en-
abling seamless support of such transformations, and it offers a
more practical alternative to trace-based checking (due to its much
lower space complexity) or output difference checking (based on
its insensitivity to the dataset content).

6.2 Evaluation Using Cilk and the Pochoir Stencil Compiler

We further evaluate PolyCheck by verifying the correctness of Cilk
and Pochoir implementations of affine programs.

Benchmarks and Setup Cilk [18, 19] is a programming model
that supports fork/join parallelism based on random work steal-
ing [17]. Cilk programs recursively divide (fork) the computation
into sub-computations and combine their result (join) to produce
the final result. Cilk is a simple extension of the base C/C++ lan-
guage with the serial elision property: removing the Cilk keywords
results in a sequential recursive program. We evaluated the cor-
rectness of the single-threaded execution of the recursive Cilk im-
plementations of affine programs, distributed as part of MIT Cilk
5.4.6 [6]. For each benchmark, we wrote the loop version as the in-
put program specification to verify the Cilk implementation. Then,
the checker code was inserted into the Cilk implementation at each
statement that generates an operation to be checked.

Pochoir [49, 50] is a embedded domain-specific language for
stencil computations. The programmer specifies the computation
in terms of a grid and the statements to compute the value of a
grid point in a multidimensional spatial grid at time t as a func-
tion of neighboring grid points at times before t. Such a specifi-
cation is compiled into C++ by the Pochoir compiler to generate
divide-and-conquer stencil codes [24, 25] based on cache-oblivious
algorithms [26, 40]. Note that the iterations or loop space are com-
pletely implicit in the program and immediately not available to the
programmer. Each benchmark in the Pochoir distribution (version
0.5) includes a reference loop implementation used for testing. We
engaged these implementations as the input source program. The
computation to be performed at each grid point is a set of state-
ments. We inserted a checker code to verify each instance of these
statements directly in the Pochoir program. The program is then
compiled through Pochoir and executed to verify the Pochoir com-
piler’s transformations.

Table 9 shows the Cilk and Pochoir benchmarks used in the
evaluation. The default dataset size was used for all benchmarks.
All benchmarks were compiled with the ICC-15.0.3 compiler with
-O3 optimization.

Evaluation and results The evaluation of our approach on Cilk
and Pochoir programs is similar to Polybench/C test suite. To emu-
late bugs, we randomly introduce problems to programs (shown in
Table 10). As in the PoCC study, we ensure the bugs introduced do
not lead to segmentation violation.

All bugs are introduced randomly for all transformed programs,
loop bound, domain, and array access. Of note, there are no explicit

550

Table 8: Errors found in transformations by PolyOpt/C 0.2.0

Benchmark Original Program Transformed Program with tile 8 1 1(involves errors)

cholesky A[1][0](1)=x(2)*p[0](1) A[1][0](1)=x(1)*p[0](1)

assert(x(2) == 2) PASS assert(x(1) == 2) Failure

reg detect mean[0][0](1)=sum diff[0][0][15](1) mean[0][0](1)=sum diff[0][0][15](0)

assert(sum diff[0][0][15](1) == 1) PASS assert(sum diff[0][0][15](0) == 0) Failure

Table 9: Cilk and Pochoir benchmarks

Benchmarks Description

Cilk

matmul Matrix-multiply C=A.B
rectmul Multiply two rectangualar matrizes

spacemul A dag-consistent Matrix Multiply
heat Heat diffusion

lu Martix LU decomposition

Pochoir

heat 2D heat equation on 2D grid
heat 2P heat equation on 2D torus

apop American put stock option pricing
3d7pt order-1 3D 7 point stencil

3d27pt order-1 3D 27-point stencil

Table 10: Summary of evaluation using Cilk and Pochoir bench-
marks

Evaluation Description Detect

Cilk
no bug original Cilk program Pass

loop bound decrease some loop upper bound
√

array access decrease some array subscript
√

Pochoir
no bug original Pochoir program Pass

loop domain decrease some loop domain
√

array access decrease some array subscript
√

loops in the Pochoir program, but macro functions specify the loop
domain. Table 10 shows the results.

6.3 Identifying Bugs in PolyOpt/C

CodeThorn [46] identified two bugs in PolyOpt/C 0.2.0 [39] poly-
hedral compiler. These bug results in incorrect code generated for
the cholesky and reg detect benchmarks. CodeThorn checks the
transformed program for a given problem size by explicitly enu-
merating the trace of statement instances and performing a veri-
fication. Table 8 shows these bugs, illustrating the array element
following the version number (in parenthesis). PolyCheck found
both bugs efficiently. We also present performance comparisons
with CodeThorn below, which showcase how PolyCheck can be
orders of magnitude faster than CodeThorn.

6.4 PolyCheck Overhead

Runtime overhead We conclude our evaluation with a detailed
reporting of the execution time of the transformed programs mod-
ified to integrate the checkers. To evaluate the checker-only over-
head, we replaced the actual computation with the checker’s ac-
tions. Each program must be run to completion to provide verifica-
tion information. Figure 9 reports the timing (normalized to the ex-
ecution time of the transformed program) of the fixed-tiling trans-
formation, without and with checker optimization described ear-
lier. Figure 10 shows the same but for the parametric-tiling trans-
formation. We remark that for reg detect, the checker code is ini-
tially slower than the transformed code. This is because our checker
code can disrupt SIMD vectorization optimizations, an effect exac-

Table 11: Overhead comparison with CodeThorn [46]

Benchmark CodeThorn PolyCheck

covariance 1.56 secs 0.005 ms

covariance-tile-8-1-1 1.71 secs 0.030 ms

fdtd-2d 1.58 secs 0.047 ms

fdtd-2d-tile-8-1-1 3.14 secs 0.071 ms

jacobi-2d-imper 0.692 ms 0.027 ms

jacobi-2d-imper-tile-8-1-1 1.50 secs 0.037 ms

seidel-2d 1.05 secs 0.031 ms

seidel-2d-tile-8-1-1 2.51 secs 0.032 ms

erbated for reg detect. In general, the checker’s execution time is
proportional to the performance of the transformed program be-
cause it has almost identical memory traffic. The arithmetic opera-
tions performed in the actual computation are replaced by checker
instructions, which can possibly represent more workload for the
checker version. The checker optimization dramatically reduces
any such effect (shown in both Figures 9 and 10). The -Opt timing
is systematically lower than the transformed program, and there are
cases, such as bicg and lu, where the overhead becomes marginal.
Nevertheless, as we always execute the program, the execution time
remains dependent on the problem size. In Figure 11, we show the
execution time to check fixed- and parametric-tiled versions of LU.
It is evident that the time to execute the checkers is significantly
lower than the transformed program. This is due to the use of op-
timized checking of full tiles. Figure 12 shows the execution time
for reg detect, where full tile optimization cannot applied.

Overhead Comparison We further evaluate PolyCheck’s runtime
overhead by presenting a comparison experiment of CodeThorn, a
trace-based tool by Schordan et al. [46]. Table 11 compares the two
tools using benchmarks and problem sizes chosen from [46]. Code-
Thorn runtimes are directly from Schordan et al. [46], and we re-
port the time of the optimized runtime checking procedure only for
PolyCheck (the static analysis time does not depend on the prob-
lem size and needs to be done only once per input program). Poly-
Check can be orders of magnitude faster than codeThorn, thanks to
very efficient runtime checking by actual execution of the program,
and limited space overhead. However PolyCheck requires the input
program to have a static/affine control-flow, while codeThorn can
handle programs with data-dependent control-flow.

7. Related Work

Verdoolaege et al. proposed a fully automatic technique to prove
equivalence between two affine programs [54]. Leveraging polyhe-
dral data-flow analysis, they developed widening/narrowing opera-
tors to properly handle non-uniform recurrences. It is implemented
in the ISA tool [3]. However, in contrast to our approach, it is lim-
ited to verifying affine program transformations. Basupalli et al. de-
veloped ompVerify, to find OpenMP parallelization errors in affine
programs [14]; and Alias et al. [9, 11] have developed other tech-
niques to recognize algorithm templates in programs. These ap-
proaches are restricted to static/affine transformed programs. Karfa
et al. also designed a method that works for a subset of affine

551

gemver gemm bicg lu jacobi2d seidel fdtd2d cova. corr. reg. doitgen0

.5

1

1.5

N
o
rm
a
liz
e
d
ru
n
n
in
g
ti
m
e

Pluto

PolyCheck

PolyCheck Opt

Figure 9: Checker running time with fixed tiling.

gemver gemm bicg lu jacobi2d seidel fdtd2d cova. corr. reg. doitgen0

.5

1

1.5

N
o
rm
a
liz
e
d
ru
n
n
in
g
tim
e

Ptile

PolyCheck

PolyCheckOpt

Figure 10: Checker running time with parametric tiling.

1000 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

450

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c

Ptile

Pluto

Ptile-PolyCheck-Opt

Pluto-PolyCheck-Opt

Figure 11: Checker running time across problem size (LU).

programs using array data dependence graphs (ADDGs) to repre-
sent input and transforming behaviors. Operator-level equivalence
checking provides the capability to normalize expressions and es-
tablish matching relations under algebraic transformations [33].

Recently, Schordan et al. proposed a trace-based framework to
verify if two programs (one possibly being a transformed variant
of the other) are semantically equivalent. Their method combines
the computation of a state transition graph with a rewrite system to
transform floating point computations and array update operations
of one program to match them as terms with those of the other
program [46]. In contrast to our approach, which only requires the
same space as the input program’s working dataset size, the space
complexity in their approach is a function of the total number of
dynamic instances of operations.

100k 200k 400k 600k 800k 1000k
0

20

40

60

80

100

120

140

160

E
x
e

c
u

ti
o

n
 t

im
e

 i
n

 s
e

c

Ptile

Pluto

Ptile-PolyCheck-Opt

Pluto-PolyCheck-Opt

Figure 12: Checker running time across problem size (Reg detect).

Other related works include Mansky and Gunter, who used the
TRANS language [32] to represent transformations. The correct-
ness proof implemented in the verification framework [35] is veri-
fied by the Isabelle [38] proof assistant. Regression verification has
been considered to support recursion, but it actually requires loops
to be converted to recursion first [29]. Other works also include
translation validation [34, 37].

Extending or simplifying static analysis through dynamic anal-
ysis of the program’s execution has been considered in prior
work [15, 31, 36, 47]. In the future, we plan to investigate anal-
ogous extensions to our dynamic verification approach to reason
about program equivalence in a problem-size-independent manner.

8. Conclusions

Using compositions of loop transformations to restructure the pro-
gram for improved performance, optimizing compilers become in-
creasingly complex and capable of generating transformed pro-
grams that are extremely far from the original code syntactically.
It is critical to assess the correctness of compiler-generated code as
these compilation frameworks themselves rely on millions of lines
of code. In this paper, we presented a new approach that exploits
the properties of affine programs to generate, at compile time, a
lightweight checking code. This checking code then is embedded
into the transformed program and run for equivalence checking.
Our approach addresses the main drawbacks of alternative solu-
tions for finding bugs in iteration reordering transformation frame-
works, and its correctness and effectiveness have been extensively
evaluated on several compilation frameworks that combine numer-
ous kinds of program transformations.

Acknowledgments

We thank the anonymous referees for the feedback and many sug-
gestions that helped us significantly in improving the presentation
of the work. This work was supported in part by the U.S. Depart-
ment of Energy’s (DOE) Office of Science, Office of Advanced
Scientific Computing Research, under awards 63823, 66905, and
DE-SC0014135, and the U.S. National Science Foundation through
award 1321147. Pacific Northwest National Laboratory is operated
by Battelle for DOE under Contract DE-AC05-76RL01830.

References

[1] Clan, the Chunky Loop Analyzer. http://icps.u-strasbg.

fr/˜bastoul.

[2] GNU GCC. http://gcc.gnu.org.

[3] ISA 0.13. http://repo.or.cz/w/isa.git.

[4] ISL, the Integer Set Library. http://repo.or.cz/w/isl.git.

552

http://icps.u-strasbg.fr/~bastoul
http://icps.u-strasbg.fr/~bastoul
http://gcc.gnu.org
http://repo.or.cz/w/isa.git
http://repo.or.cz/w/isl.git

[5] LLVM. http://llvm.org.

[6] MIT Cilk. http://supertech.csail.mit.edu/cilk.

[7] PoCC, the Polyhedral Compiler Collection 1.3. http://pocc.

sourceforge.net.

[8] PolyBench/C 3.2. http://polybench.sourceforge.net.

[9] C. Alias and D. Barthou. On the recognition of algorithm templates.
Electronic Notes in Theoretical Computer Science, 82(2):395–409,
2004.

[10] W. Bao, S. Krishnamoorthy, L.-N. Pouchet, F. Rastello, and P. Sa-
dayappan. Polycheck: Dynamic verification of iteration space trans-
formations on affine programs. Technical report, OSU/PNNL/INRIA,
Nov. 2015. OSU-CISRC-11/15-TR21.

[11] D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two
systems of affine recurrence equations. In Euro-Par 2002 Parallel

Processing. 2002.

[12] M. M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanu-
jam, and P. Sadayappan. Parameterized tiling revisited. In Proc. of the

8th annual IEEE/ACM international symposium on Code generation

and optimization. ACM, 2010.

[13] C. Bastoul. Code generation in the polyhedral model is easier than
you think. In Proc. of the 13th International Conference on Parallel

Architectures and Compilation Techniques. IEEE, 2004.

[14] V. Basupalli, T. Yuki, S. Rajopadhye, A. Morvan, S. Derrien, P. Quin-
ton, and D. Wonnacott. ompVerify: polyhedral analysis for the
OpenMP programmer. In OpenMP in the Petascale Era, pages 37–
53. Springer, 2011.

[15] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J. Simmons, S. D.
Tetali, and A. V. Thakur. Proofs from tests. In Proc. of the 2008 In-

ternational Symposium on Software Testing and Analysis (ISSTA’08).
IEEE, 2010.

[16] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson. On-
the-fly maintenance of series-parallel relationships in fork-join multi-
threaded programs. In Proc. of the 16th Annual ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA’04). ACM, 2004.

[17] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM (JACM), 46(5):720–748,
1999.

[18] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
In Proc. of the 5th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming. ACM, 1995.

[19] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime system,
volume 30. ACM, 1995.

[20] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. In ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation. ACM, 2008.

[21] P. Feautrier. Dataflow analysis of array and scalar references. Interna-

tional Journal of Parallel Programming, 20(1):23–53, 1991.

[22] P. Feautrier. Some efficient solutions to the affine scheduling problem,
part II: multidimensional time. International Journal of Parallel

Programming, 21(6):389–420, 1992.

[23] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dynamic
race detection. In Proc. of the 2009 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’09).
ACM, 2009.

[24] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In
Proc. of the 19th annual international conference on Supercomputing.
ACM, 2005.

[25] M. Frigo and V. Strumpen. The cache complexity of multithreaded
cache oblivious algorithms. Theory of Computing Systems, 45(2):203–
233, 2009.

[26] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In Proc. of the 40th Annual Symposium on

Foundations of Computer Science. IEEE, 1999.

[27] P. Gachet, C. Mauras, P. Quinton, and Y. Saouter. Alpha du centaur: a
prototype environment for the design of parallel regular alorithms. In
Proc. of the 3rd international conference on Supercomputing. ACM,
1989.

[28] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations.
International Journal of Parallel Programming, 34(3):261–317, June
2006.

[29] B. Godlin and O. Strichman. Inference rules for proving the equiva-
lence of recursive procedures. Acta Informatica, 45(6):403–439, 2008.

[30] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. Interna-

tional Journal of Parallel Programming, 28(6):607–631, 2000.

[31] A. K. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs.
In Proc. of the 15th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’09). Springer,
2009.

[32] S. Kalvala, R. Warburton, and D. Lacey. Program transformations
using temporal logic side conditions. ACM Trans. on Programming

Languages and Systems (TOPLAS), 31(4):14, 2009.

[33] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Verification of loop
and arithmetic transformations of array-intensive behaviors. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems,
32(11):1787–1800, 2013.

[34] S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations correct
using parameterized program equivalence. ACM SIGPLAN Notices,
44(6):327–337, 2009.

[35] W. Mansky and E. Gunter. A framework for formal verification of
compiler optimizations. In Interactive Theorem Proving. Springer,
2010.

[36] M. Naik, H. Yang, G. Castelnuovo, and M. Sagiv. Abstractions from
tests. In Proc. of the 39th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages (POPL’12). ACM, 2012.

[37] G. C. Necula. Translation validation for an optimizing compiler. ACM

SIGPLAN Notices, 35(5):83–94, 2000.

[38] L. C. Paulson. Isabelle Page. https://www.cl.cam.ac.uk/

research/hvg/Isabelle.

[39] L. Pouchet. Polyopt/C: A polyhedral optimizer for the rose compiler,
2011.

[40] H. Prokop. Cache-oblivious algorithms. PhD thesis, Massachusetts
Institute of Technology, 1999.

[41] D. Quinlan, C. Liao, R. Matzke, M. Schordan, T. Panas, R. Vuduc,
and Q. Yi. ROSE Web Page. http://www.rosecompiler.org,
2014.

[42] P. Quinton and V. Van Dongen. The mapping of linear recurrence
equations on regular arrays. Journal of VLSI signal processing systems

for signal, image and video technology, 1(2):95–113, 1989.

[43] S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On synthe-
sizing systolic arrays from recurrence equations with linear dependen-
cies. In Proc. of the 16th annual conference on Foundations of Soft-

ware Technology and Theoretical Computer Science. Springer, 1986.

[44] R. Raman, J. Zhao, V. Sarkar, M. T. Vechev, and E. Yahav. Scalable
and precise dynamic datarace detection for structured parallelism.
In Proc. of the 2012 ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’12). ACM, 2012.

[45] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. on Computer Systems (TOCS), 15(4):391–411, 1997.

[46] M. Schordan, P.-H. Lin, D. Quinlan, and L.-N. Pouchet. Verification
of polyhedral optimizations with constant loop bounds in finite state
space computations. In Proc. of the 6th International Symposium On

Leveraging Applications of Formal Methods, Verification and Valida-

tion. Springer, 2014.

[47] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori.
A data driven approach for algebraic loop invariants. In Proc. of the

22nd European conference on Programming Languages and Systems

(ESOP’13). Springer, 2013.

553

http://llvm.org
http://supertech.csail.mit.edu/cilk
http://pocc.sourceforge.net
http://pocc.sourceforge.net
http://polybench.sourceforge.net
https://www.cl.cam.ac.uk/research/hvg/Isabelle
https://www.cl.cam.ac.uk/research/hvg/Isabelle
http://www.rosecompiler.org

[48] J. Shirako, L.-N. Pouchet, and V. Sarkar. Oil and water can mix: Rec-
onciling polyhedral and ast transformations. In IEEE/ACM Confer-

ence on Supercomputing (SC’14). IEEE, 2014.

[49] Y. Tang, R. Chowdhury, C.-K. Luk, and C. E. Leiserson. Coding
stencil computations using the pochoir stencil-specification language.
In Poster session presented at the 3rd USENIX Workshop on Hot

Topics in Parallelism, 2011.

[50] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson. The pochoir stencil compiler. In Proc. of the 32rd an-

nual ACM symposium on Parallelism in algorithms and architectures.
ACM, 2011.

[51] S. Verdoolaege. isl: An integer set library for the polyhedral model. In
The 3rd International Congress on Mathematical Software (ICMS’10).
Springer, 2010.

[52] S. Verdoolaege. Counting affine calculator and applications. In The

1st International Workshop on Polyhedral Compilation Techniques

(IMPACT’11), 2011.

[53] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe.
Counting integer points in parametric polytopes using Barvinok’s ra-
tional functions. Algorithmica, 48(1):37–66, June 2007.

[54] S. Verdoolaege, G. Janssens, and M. Bruynooghe. Equivalence check-
ing of static affine programs using widening to handle recurrences.
ACM Trans. on Programming Languages and Systems (TOPLAS), 34
(3):11, 2012.

[55] M. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

[56] W. Zuo, P. Li, D. Chen, L.-N. Pouchet, S. Zhong, and J. Cong.
Improving polyhedral code generation for high-level synthesis. In
IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis (CODES+ISSS’13). IEEE, 2013.

554

	Introduction
	Motivation and Overview
	Background
	Integer Sets Notation
	Polyhedral Dependences

	Verifying Transformations on Affine Programs
	Algorithm A: A General Algorithm for all Affine Input Programs
	Compile-time analysis of the input program
	Compile-time analysis of the transformed program

	Algorithm B: A Version-Number based Algorithm
	Illustrative Example: Seidel
	Time and Space Complexity

	Scope of Applicability, Enhancements, and Limitations
	Experimental Evaluation
	Evaluation Using the PoCC Polyhedral Compiler
	Compiler Passes Considered
	Results Overview
	Finding Bugs in the Generated Codes
	Discussions

	Evaluation Using Cilk and the Pochoir Stencil Compiler
	Identifying Bugs in PolyOpt/C
	PolyCheck Overhead

	Related Work
	Conclusions

