
Stencil Domain Specific Language (SDSL) User Guide
0.3.2

Tom Henretty Prashant Rawat Justin Holewinski
Naser Sedaghati Louis-Nöel Pouchet Atanas Rountev

P. Sadayappan

Compiled August 24, 2014

ii

Contents

1 Introduction 1

2 Installation 3

2.1 Required Software . 3

2.2 Building and Installing . 4

2.3 Quick Start . 5

3 SDSL Language Reference 7

3.1 Introduction to the Running Example . 7

3.2 Language Features . 8

3.2.1 Comments . 8

3.2.2 Literal Values . 8

3.2.3 Identifiers . 9

3.2.4 Arithmetic Expressions . 9

3.2.5 Parameters and Constants . 9

3.2.6 Grids . 9

3.2.7 Grid Data . 10

3.2.8 Grid Data References . 10

3.2.9 Grid Subsets . 10

3.2.10 Point Functions . 11

3.2.11 Iterate and Check Every . 11

3.2.12 Stencils . 12

3.2.13 Reductions . 13

4 Embedded SDSL 15

4.1 Embedding SDSL in C/C++ . 15

4.1.1 #pragma sdsl . 15

4.1.2 Parameter and Array Passing . 15

4.1.3 Return Values . 16

4.2 Embedding SDSL in MATLAB . 16

iii

5 SDSL Compiler Reference 19
5.1 Common Case Usage . 19

5.1.1 SDSL embedded in C/C++ . 19
5.1.2 SDSL embedded in MATLAB . 20

5.2 Command Line Options . 20
5.3 Running the Example Benchmarks . 21

5.3.1 CDSC Pipeline . 22
5.3.2 General Benchmarks . 22

6 SDSL Autotuner Reference 25
6.1 Common Case Usage . 25
6.2 Configuration File Format . 26
6.3 Embedded SDSL File Restrictions . 27
6.4 Autotuning the Example Benchmarks . 27

6.4.1 CDSC Pipeline . 27
6.4.2 General Benchmarks . 28

7 Detailed Example: Rician Denoise 29
7.1 C Reference Code . 29

7.1.1 Function Signature . 29
7.1.2 Arrays . 31
7.1.3 Constants and Variables . 31
7.1.4 Main Iterative Loop . 31
7.1.5 G Stencil . 32
7.1.6 U Stencil . 32
7.1.7 Convergence Check . 32

7.2 Creating a C/SDSL Skeleton Function . 32
7.3 Passing Data from C to SDSL . 33

7.3.1 Parameters and Constants . 33
7.3.2 Arrays . 33

7.4 Implementing pointfunctions . 34
7.4.1 approx g . 34
7.4.2 update u . 35

7.5 Defining the Iterate . 35
7.5.1 Stencils . 36
7.5.2 reduction . 38
7.5.3 Convergence Check . 38

7.6 Generating Code . 38
7.7 Autotuning OverTile Parameters for GPU 39

7.7.1 Building the Configuration File . 40
7.7.2 Running the Autotuner . 40
7.7.3 Examining the Autotuner Results . 40

iv

8 Known Limitations 43
8.1 General . 43
8.2 Affine C Backend . 43
8.3 OverTile Backend . 43
8.4 Nested Split-tiling DLT Backend . 44
8.5 Hybrid Split-tiling DLT Backend . 44

Bibliography 45

v

vi

Chapter 1

Introduction

SDSL (Stencil Domain Specific Language) is a domain-specific language for expressing sten-
cil computations. SDSL is loosely based on the RNPL[5] and SNPL[6] languages used for
rapid prototyping of partial differential equation solvers, although the resemblance is mostly
cosmetic and no code is shared between the projects.

The purpose of SDSL is to provide a programming language that allows for the speci-
fication of non-trivial stencil computations in a form that enables the generation of high-
performance implementations that can be obtained in a performance-portable manner on
multiple platforms.

Currently, SDSL can be translated into codes for CPU and GPU execution. CPU code
is generated by number of backends that produce unoptimized and optimized C code with
affine structure.

• Unoptimized affine C code is C99 compliant and is meant to be processed further by
polyhedral optimization tools such as PoCC [7] and PolyOpt/C [8].

• Optimized CPU code is C99 compliant and uses vector intrinsic functions for x86
and 32-bit ARM CPU. The code is optimized with nested/hybrid split-tiling [3] in
conjunction with dimension-lift-and-transpose [2] data layout transformations.

• Optimized GPU code is generated in CUDA C and is performed by the OverTile [4]
backend. OverTile generated code can be autotuned using a simple script included
with the sdslc distribution.

SDSL code can be embedded in C, C++, and MATLAB. Optimized MATLAB code is
generated as C functions called via MEX.

The SDSL User Guide is organized into the following chapters:

• Chapter 1: “Introduction”

• Chapter 2: “Installation”

• Chapter 3: “SDSL Language Reference”

1

• Chapter 4: “Embedded SDSL”

• Chapter 5: “SDSL Compiler Reference”

• Chapter 6: “SDSL Autotuner Reference”

• Chapter 7: “Example: Rician Denoise”

• Chapter 8: “Known Limitations”

2

Chapter 2

Installation

2.1 Required Software

The following components are required to build the SDSL compiler:

• Apache Ant

• Bison

• CMake 2.8 or higher

• gcc/g++ 4.4 or higher

• Java JDK 1.6 or higher

– Must be JDK, not JRE

• LLVM 3.0 or higher

– Must be built with CMake 1

• Nvidia CUDA SDK 5.0 or higher

• Python 2.7

The SDSL compiler has been successfully built and run on Fedora 16, Ubuntu 12.04, and
RHEL 6.3.

1Please note that most Linux distributions including RHEL, Ubuntu, and Fedora do not compile LLVM
with CMake. This means that LLVM will need to be built from source with CMake. See http://llvm.org/

docs/CMake.html for details on how to do this.

3

http://llvm.org/docs/CMake.html
http://llvm.org/docs/CMake.html

2.2 Building and Installing

To setup the build environment, please set the following environment variables:

• JAVA HOME: Set to installation directory of Java JDK
e.g. export JAVA HOME=/usr/lib/jvm/java-1.6.0-openjdk

• PATH: Make sure ant is available on your PATH

• LLVM HOME: Set to installation directory of LLVM

• CUDA HOME: Set to installation directory of CUDA SDK

• SDSLC INSTALL DIR: Set to directory you wish to install SDSLC

The entire build process is controlled by a CMake script. You can generate the makefiles for
the project by creating a build directory and invoking CMake. The following CMake options
are recognized:

• OT LLVM BINARY DIR

– The installation path of LLVM

– Required

• CUDA INSTALL DIR

– The installation path of the CUDA SDK

– Defaults to /usr/local/cuda

• SDSLC INSTALL DIR

– Path to install the sdslc package at

– Defaults to /usr/local

The following series of commands will build sdslc starting from a tar.gz distribution:

$ tar xzvf sdslc-0.3.2.tar.gz

$ cd sdslc-0.3.2

$ mkdir build

$ cd build

$ cmake -DOT LLVM BINARY_DIR=$LLVM HOME -DCUDA INSTALL DIR=$CUDA_HOME

-DSDSLC INSTALL DIR=/usr/local/sdslc-0.3.2 ..

$ make

$ make install

Root or sudo access may be required for the make install command, depending on the value
of SDSLC INSTALL DIR. The main executable produced is the $SDSLC INSTALL DIR/bin/sdslc

script that wraps the sdslc Java program.

4

2.3 Quick Start

To quickly build and run SDSL example codes see Section 5.3, “Running the Example Bench-
marks”, and Section 6.4, “Autotuning the Example Benchmarks”.

5

6

Chapter 3

SDSL Language Reference

This chapter provides a reference for all major SDSL language features. A simple 2-
dimensional Jacobi stencil is used a running example to illustrate the usage of the language
features throughout the rest of the chapter.

3.1 Introduction to the Running Example

Figure 3.1 is a complete SDSL program to compute a 2-dimensional, 5 point Jacobi stencil.
This section gives an overview of the program; the remainder of this chapter uses this example
to illustrate important language features.

1 int dim0;

2 int dim1;

3
4 grid g [dim1][dim0];

5
6 float griddata a on g at 0,1;

7
8 pointfunction five_point_avg(p) {

9 float ONE_FIFTH;

10 ONE_FIFTH = 0.2f;

11 [1]p[0][0] = ONE_FIFTH *([0]p[-1][0] + [0]p[0][-1] + [0]p[0][0] + [0]p[0][1] + [0]p[1][0]);

12 }

13
14 iterate 1000 {

15 stencil jacobi_2d {

16 [0][0: dim0 -1] : [1]a[0][0] = [0]a[0][0];

17 [dim1 -1][0: dim0 -1] : [1]a[0][0] = [0]a[0][0];

18 [0:dim1 -1][0] : [1]a[0][0] = [0]a[0][0];

19 [0:dim1 -1][dim0 -1] : [1]a[0][0] = [0]a[0][0];

20
21 [1:dim1 -2][1: dim0 -2] : five_point_avg(a);

22 }

23
24 reduction max_diff max {

25 [0:dim1 -1][0: dim0 -1] : fabs ([1]a[0][0] - [0]a[0][0]);

26 }

27 } check (max_diff < .00001f) every 4 iterations

Figure 3.1: Jacobi 2-dimensional, 5 point stencil written in SDSL.

The program begins with a declaration of two int parameters, dim0 and dim1 on lines 1
and 2. These parameters are used to define a 2-dimensional grid of size dim1×dim0 on line

7

4. Line 6 declares floating point griddata in the shape of the grid defined on line 4. This
data is also declared to exist at two different offsets from the current timestep, 0 and 1.

Lines 8–12 define a 5 point stencil as a pointfunction named five pt avg. This function
takes a parameter p, the grid data used to calculate the stencil. five pt avg averages 5
neighboring points in one timestep of p and writes the result to a point in the next timestep
of p.

Lines 14–27 define an iterative loop with a convergence check. The iterate construct on
line 14 specifies that the iterative loop should run, at most, 1000 times. Lines 16–21 define
a stencil computation over subsets of the problem domain. Lines 16–19 specify the value of
the edges of grid data a to be the same at both timesteps at which a is defined. Line 21
specifies that the point function five pt avg be applied at every point over the interior of
a.

Lines 24–26 define a reduction to be performed at every point on a. The reduction
variable is max diff, and it contains the largest difference between a value of an element of
a at two successive timesteps.

Finally, line 27 defines a convergence condition for the iterate and specifies how fre-
quently this check is to be performed. In this program the condition is that the largest
difference between successive time values of an element of a is less than .00001 and that this
condition should be checked every 4 iterations.

3.2 Language Features

The subsections that follow provide detailed information on the various constructs of the
SDSL language.

3.2.1 Comments

SDSL programs can be commented with C/C++ style comments. C-style comments begin
with the characters /* and continue until terminated by the */ characters. C++-style
comments begin with the characters // and continue until terminated by a new line.

3.2.2 Literal Values

Floating point and integer literal values can be explicitly represented in SDSL. These values
are used in SDSL expressions, described in Section 3.2.4. Both floating point and integer
literals are always interpreted as base 10 numbers.

In the current definition of the language, the syntax and types of these literals correspond
to the int, long, float, and double literals of the C/C++ language in which SDSL is
embedded (see Chapter 4). Future refinements of SDSL may introduce a richer set of literal
values (e.g., hex/octal literals).

8

3.2.3 Identifiers

C-style identifiers are used to name parameters, constants, grids, grid data, point functions,
point function parameters, variables in point functions, stencils, and reductions.

The following production defines legal identifiers in SDSL:

ID : (‘a’..‘z’|‘A’..‘Z’|‘_’) (‘a’..‘z’|‘A’..‘Z’|‘0’..‘9’|‘_’)*

The first character of an identifier must be a letter or an underscore. Subsequent char-
acters must be letters, numbers, or underscores.

3.2.4 Arithmetic Expressions

Arithmetic expressions contain literals, constants, parameters, grid data references, and
function calls. Addition, subtraction, multiplication, division, and modulo operations are
permitted. In the current implementation, calls to side-effect-free external functions from
C’s math.h and stdlib.h are permitted by default; a more general mechanism for accessing
external code from within SDSL code will be designed in the future.

Expression terms may be grouped together using parentheses. Operator associativity
and precedence are similar to those in C/C++.

3.2.5 Parameters and Constants

Parameters and constants are the first items declared and defined in a SDSL program.
Both parameters and constants can be of type int, long, float, or double. A parameter
declaration includes the type and identifier of the parameter, while a constant is declared
with the type, name, and value. Parameters are bound to values at the time of program
execution. Examples of parameter and constant declarations are shown below.

int dim0;

int dim1;

float PI = 3.14f;

float CONVERGE_AT = .00001f;

3.2.6 Grids

A grid defines the physical geometry of a domain over which a stencil is to be computed.
Grids are restricted to being rectangular, and can be 1-, 2-, or 3-dimensional.

grid g [dim1][dim0];

The above SDSL statement defines a grid with the identifier g. This grid is 2-dimensional
with the first dimension having a size of dim1 points and the second dimension having a size
of dim0 points.

9

3.2.7 Grid Data

griddata is a concrete instance of a grid and has a type of int, long, float, or double.
Grid data is defined over one or more offsets from the current timestep. Timestep offsets
must be consecutive integers.1

float griddata a on g at 0,1;

The above griddata declaration states that we are creating a concrete instance of grid
g of type float with the identifier a defined over timesteps 0 and 1.

3.2.8 Grid Data References

Grid data is referenced in point functions, iterates, and reductions. A grid data reference
consists of a temporal offset, the identifier of the grid data being referenced, and a spatial
offset for each dimension of the grid data.

The temporal offset of a grid data reference is the offset with respect to the current
timestep. Suppose a point function is currently being executed at time t. A temporal offset
of 1 corresponds to grid data at time t+ 1. At the next time iteration t′ = t+ 1, a temporal
offset of 0 would be used to access the same data accessed with a temporal offset of 1 at
time t.

When grid data is referenced spatially, it is always in relation to a point in an n-
dimensional grid. All offsets are calculated from this point. Suppose a point function is
currently being applied at point i in a one dimensional grid. An offset of 1 corresponds to
the point i + 1.

Below is a simple 2-dimensional grid data references in SDSL representing the current
point being processed, 1 timestep in the future.

[1]data[0][0]

The temporal offset, enclosed by brackets, is first. After the temporal offset is the iden-
tifier of the grid data being referenced. Finally, the offsets of the referenced point in each
spatial dimension, with each offset enclosed in brackets, are given. Another 2-dimensional
reference is shown below. This reference is offset by -1 in the outer spatial dimension.

[1]data[-1][0]

3.2.9 Grid Subsets

Subsets of a grid can be specified in a stencil and a reduction so that different compu-
tations are performed according to the location of a point on a grid. A subset of a grid
is defined in each spatial dimension and is two integer expressions, separated by a colon,
enclosed in brackets. The expressions define the start and end coordinates of the subset in
the given dimension. An example subset containing all but the edges of a 2-dimensional
dim1×dim0 grid is shown below.

1A convenient way to view timestep offsets is as another dimension of a grid. A 2-dimensional, dim1×dim0
grid defined on timesteps 0 and 1 can be thought of as a 3-dimensional grid with the third dimension having
a size of 2.

10

[1:dim1-2][1:dim0-2]

Grid subsets may also consist of just one expression, in which case the subset exists only
at the coordinate obtained by evaluating the expression. The example below illustrates this
by defining a subset representing the last column of an dim1×dim0 grid.

[0:dim1-1][dim0-1]

More examples of subsets can be seen in Section 3.2.12 and Section 3.2.13.

3.2.10 Point Functions

Point functions contain stencil implementations. A pointfunction takes griddata as pa-
rameters and executes a series of computations using grid data references. When a point
function is called, it is at an arbitrary point in a grid. All spatial components of grid data
references within the point function are offsets from this point.

A pointfunction may compute an arbitrary number of points on an arbitrary number
of grid data references. Variables of type int, long, float, and double may be declared and
used. Constant values and parameters of the SDSL program can be used and should not be
included in the parameter list of the point function. Conditional statements are currently
not allowed.

pointfunction five_point_avg(p) {
float ONE_FIFTH;

ONE_FIFTH = 0.2f;

[1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1] + [0]p[0][0] + [0]p[0][1] + [0]p[1][0]);

}

Figure 3.2: Jacobi 2-dimensional, 5 point stencil point function.

Figure 3.2 corresponds to a simple Jacobi stencil that averages the point being processed
and four of its neighboring points. It begins with the pointfunction keyword followed by
the identifier five point avg. Only one grid data parameter, p, is passed. The body of
the point function contains the declaration of a floating point variable ONE FIFTH and the
subsequent assignment of the value 0.2 to that variable. The last line updates the current
point in p at timestep 1 with the value of itself and its top, bottom, left, and right neighbors
at timestep 0.

3.2.11 Iterate and Check Every

The outer iterative loop of a stencil computation is defined using the iterate construct.
This construct contains a sequence of stencil and reduction definitions. The defined stencils
are executed once every outer loop iteration, and are executed in the order in which the
stencil definitions appear in the iterate. Reductions are performed every n-th iteration
as specified by the check ... every clause. The defined reductions are also executed in
the order in which the reduction definitions appear in the iterate. The general form of
an iterate is shown in Figure 3.3.

An iterate defines a maximum number of times that a sequence of stencils and reductions
will execute. The only way for an iterate to terminate before the given number of iterations

11

iterate maximum iterations {
sequence of stencils and / or reductions

} optional termination condition

Figure 3.3: General form of the iterate construct.

is through the definition of a termination condition (such as a convergence check) via the
optional check ... every clause following the iterate. The general form of the clause is
shown below.

check (conditional expression) every n iterations

The conditional expression uses the >, <, <=, >=, ==, and != operators to form ex-
pressions using reduction variables, parameters, constants, floating point literals, and integer
literals. This expression evaluates to a boolean value. If the condition evaluates to true, the
outer iterative loop stops executing. This condition is evaluated at the end of every n-th
iteration, as specified in the every part of the clause.

Inside of the iterate, stencils and reductions can be specified. These form the bulk of the
computational work and are described in the following sections.

3.2.12 Stencils

A stencil is always located inside an iterate and defines an iteration over programmer-defined
elements of an abstract n-dimensional grid. This iteration is not guaranteed to occur in
any order and can occur in parallel. The dimensionality of the grid is determined by the
dimensionality of the grid subsets defined within the stencil. A stencil has the general form
shown in Figure 3.4.

stencil identifier {
sequence of (grid subset,expression) pairs

}

Figure 3.4: General form of the stencil construct.

A stencil begins with the stencil keyword followed by an identifier. Inside the body of
the stencil are one or more pairs of the form gs:exp; where gs is a grid subset and exp is
either an assignment expression or a point function call.

stencil jacobi_2d {
[0][0:dim0-1] : [1]a[0][0] = [0]a[0][0];

[dim1-1][0:dim0-1] : [1]a[0][0] = [0]a[0][0];

[0:dim1-1][0] : [1]a[0][0] = [0]a[0][0];

[0:dim1-1][dim0-1] : [1]a[0][0] = [0]a[0][0];

[1:dim1-2][1:dim0-2] : five_point_avg(a);

}

Figure 3.5: Stencil written in SDSL.

An example stencil is given in Figure 3.5. The stencil begins with the stencil keyword
followed by the identifier jacobi 2d. The body of the stencil sets the top, bottom, left, and

12

right edges of grid data a at timestep 1 to their values at timestep 0. Finally, the body of
the grid data is computed with the point function five point avg.

3.2.13 Reductions

A reduction consists of the reduction keyword, an identifier that names the reduction, and a
reduction operator. Finally, a reduction contains a sequence of grid subsets and an operation
that is to be performed on that subset. Reductions cannot contain point function calls.

The results of the computation at each grid point are combined with the reduction
operator into a reduction variable. The name of the reduction acts as this reduction variable
and can be used in the conditional statement of a check ... every clause. Legal reduction
operators are ‘+’, ‘*’,‘max’, and ‘min’.

reduction max_diff max {
[0:dim1-1][0:dim0-1] : fabs([1]a[0][0] - [0]a[0][0]);

}

Figure 3.6: Reduction written in SDSL.

A simple reduction is shown in Figure 3.6. This reduction uses a reduction variable
named max diff to store the largest absolute difference between a value of an element of a
at timesteps 0 and 1.

13

14

Chapter 4

Embedded SDSL

It is possible to embed one or more SDSL code sections in any C/C++ or MATLAB code.

4.1 Embedding SDSL in C/C++

Figure 4.1 shows the running SDSL example embedded in C code. The embedded SDSL
code is located between the pragmas at lines 9 and 26. We discuss three aspects of the
embedding: SDSL pragmas, parameter / array / grid data passing, and return values.

4.1.1 #pragma sdsl

Every embedded section of SDSL begins with #pragma sdsl begin and is terminated by
#pragma sdsl end. Optionally, this pragma may contain a gpu() clause specifying param-
eters used by the OverTile [4] backend for CUDA C code generation.

• block:<comma separated list of integers> : A comma separated list of integers
specifying the GPU thread block size for generated code. There must be one integer
in the list for each spatial dimension of the grid in the SDSL code.

• tile:<comma separated list of integers> : A comma separated list of integers
specifying the number of elements to be computed per thread. There must be one
integer in the list for each spatial dimension of the grid in the SDSL code.

• time:<integer> : A single literal integer value specifying the time tile size in the
generated code.

4.1.2 Parameter and Array Passing

Both parameters and arrays can be passed from host C/C++ code to embedded SDSL.

• Parameters: float, double, int, and long parameters may be passed from host
code to SDSL code by (1) declaring the parameter in the embedded SDSL code (as

15

1 #define SIZE (256)

2
3 int main() {

4 float a[SIZE][SIZE];

5 int dim0 = SIZE;

6 int dim1 = SIZE;

7 float c1 = 0.2f;

8
9 #pragma sdsl begin gpu(block :64,8 tile:1,8 time :10)

10 int dim0;

11 int dim1;

12 float c1;

13
14 grid g[dim1][dim0];

15 float griddata a on g at 0,1;

16
17 pointfunction five_pt(x) {

18 [1]x[0][0] = c1 *([0]x[-1][0] + [0]x[0][-1] + [0]x[0][0] + [0]x[0][1] + [0]x[1][0]);

19 }

20
21 iterate 1000 {

22 stencil j5p {

23 [1:dim1 -2][1: dim0 -2] : five_pt(a);

24 }

25 }

26 #pragma sdsl end

27
28 return sdsl_return_0;

29 }

Figure 4.1: SDSL code for a 2D Jacobi stencil embedded in C code.

described in Section 3.2.5) and (2) declaring and defining a variable with an identical
name and identical type in the host C/C++ code.

• Arrays: float, double, int, and long arrays may be passed from host code to SDSL
code by (1) declaring griddata in the SDSL code (as described in Section 3.2.7) and
(2) declaring an array with an identical name, identical type, and identical size.

The example in Figure 4.1 passes the parameters dim0, dim1, and c1. The array a is also
passed.

4.1.3 Return Values

Each section of embedded SDSL bounded by #pragma sdsl begin and #pragma sdsl end

creates an int variable in the host code that contains the exit code of the SDSL program.
The exit code will be 0 for successful execution and non-zero for error conditions. Exit code
values cannot currently be defined in SDSL code.

The host variable used to hold the exit code is named sdsl return <index> where
<index> is the position of the embedded SDSL section in host code relative to other embed-
ded SDSL sections, where the first SDSL section, syntactically, in a source file has <index>

= 0, the second has <index> = 1, etc.

4.2 Embedding SDSL in MATLAB

Many programs for scientific computation and visualization are written in MATLAB, the
license for which can be obtained from http://www.mathworks.com. MATLAB provides a

16

http://www.mathworks.com

simple programming environment, but running MATLAB code is often time-consuming. A
general technique to accelerate MATLAB is using the MEX interface to execute optimized
native code.

Compute-intensive stencil code in a MATLAB program can be rewritten in SDSL. The
resulting MATLAB code can be compiled by sdslc to generate a MEX source file containing
a C or CUDA implementation of the SDSL functions and necessary MEX glue code. The
generated MEX function can be independently optimized for different architectures.

To illustrate the integration of SDSL into MATLAB, a MATLAB code for denoising
(riciandenoise.m), and its SDSL-integrated equivalent version (riciandenoise sdsl.m)
are made available in SDSLC INSTALL DIR/share/sdslc/examples/matlab. The loop at
lines 70–109 in riciandenoise.m represents a stencil computation which can be better
optimized if represented in SDSL. Since all the arrays used within the loop will be passed as
an argument to the MEX function, such arrays must already appear before the definition of
the SDSL stencil in the SDSL-integrated MATLAB code.

The MATLAB code in ricianenoise.m uses a 2d-array ulast to create a copy of the
array u. In SDSL, however, the array u is defined on timesteps 0,1 as:

double griddata u on gr at 0,1;

In SDSL, references to ulast can be replaced by references to [0]u[][]. Hence, there
is no explicit declaration for ulast in the SDSL code.

While writing the SDSL stencil, the grid dimensions must be declared first (starting
with the fastest varying dimension first), followed by the declaration of parameters in the
surrounding host program. For example, in riciandenoise sdsl.m, the SDSL stencil begins
with the declaration:

1 int N2;

2 int N1;

3
4 double dt;

5 ...

6 double gamma;

7
8 grid gr[N1][N2];

9 ...

The 2D grid gr is defined to be of dimensions N1 × N2, with N2 being the fastest varying
dimension. Hence, N2 is declared first, followed by N1. If the grid was 3-dimensional (N1 ×
N2 × N3), then N3 would have been declared before N2. After declaring all the dimensions,
we declare the other scalars in the host program (dt, epsilon, ..., gamma). Then we declare
the grid, and lastly the griddata on the grid at different timesteps. SDSL code embedded in
MATLAB is defined by the same syntax and semantics as SDSL code embedded in C/C++.
See Chapter 3 for a complete description.

17

18

Chapter 5

SDSL Compiler Reference

This chapter provides details on the operation of the SDSL source-to-source compiler, located
at $SDSLC INSTALL DIR/bin/sdslc.

5.1 Common Case Usage

5.1.1 SDSL embedded in C/C++

In general, the SDSL compiler will take an input C/C++ file with one or more embedded
SDSL sections and convert this to an output C/C++/CUDA file using one of four backends:

• affine-c: produces “plain C” code with an affine structure suitable for subsequent
polyhedral analyses and transformations

• overtile: produces CUDA code that is optimized with overlapped tiling.

• nest-split-dlt: produces C code optimized with nested split-tiling and DLT.

• hyb-split-dlt: produces C code optimized with hybrid split-tiling and DLT.

Example command line invocations for each backend are shown below:

$ sdslc -b affine-c -f example.sdsl.c -o example.affine.c

$ sdslc -b overtile -f example.sdsl.c -o example.overtile.cu

$ sdslc -b nest-split-dlt -f example.sdsl.c -o example.nested.c

$ sdslc -b hyb-split-dlt -f example.sdsl.c -o example.hybrid.c

In all examples the same input source file, example.sdsl.c, is used. The first invocation
produces a C file named example.affine.c using the affine C backend; the second pro-
duces a CUDA file named example.overtile.cu using the OverTile backend; the third
produces example.nest.c using the nested split-tiling DLT backend; and the fourth pro-
duces example.hybrid.c using the hybrid split-tiling DLT backend.

19

The nested and hybrid split-tiled variants of the code use parametric tile sizes that can
be tuned at run time for optimum performance on a given platform. By default, SSE2 vector
intrinsics are used when generating split-tiled code, although this can be changed with the
-i flag to sdslc. See Section 5.2 for details.

5.1.2 SDSL embedded in MATLAB

SDSL code can also be embedded in MATLAB source and optimized with the sdslc compiler.
Like C/C++ codes, four backends are available.

• maffine-c: produces “plain C” code with an affine structure suitable for subsequent
polyhedral analyses and transformations

• movertile: produces CUDA code that is optimized with overlapped tiling.

• mnest-split-dlt: produces C code optimized with nested split-tiling and DLT.

• mhyb-split-dlt: produces C code optimized with hybrid split-tiling and DLT.

Example command line invocations for each backend are shown below:

$ sdslc -b maffine-c -f example.sdsl.m -o example.affine.m

$ sdslc -b movertile -f example.sdsl.m -o example.overtile.m

$ sdslc -b mnest-split-dlt -f example.sdsl.m -o example.nested.m

$ sdslc -b mhyb-split-dlt -f example.sdsl.m -o example.hybrid.m

Note that the output filename given is the name of the generated MATLAB file name. This
file will include one or more MEX calls to a function defined in a file named sdsl program <hexid>.c

in the same directory. The <hexid> component of the filename will not change when dif-
ferent backends are selected. Practically speaking, this means that any invocation of sdslc
on MATLAB files, int the same directory, with identical SDSL sections, will result in the
sdsl program <hexid>.c file being overwritten.

5.2 Command Line Options

The SDSL compiler, sdslc, is controlled with a number of command line options, listed
below. Each option has equivalent short (e.g. -x) and long (e.g. --extern-c) forms.

• -b <arg>, --backend <arg>

Set backend code generator as ‘affine-c’ (default), ‘overtile’, ‘nest-split-dlt’,
‘hyb-split-dlt’, ‘maffine-c’, ‘movertile’, ‘mnest-split-dlt’, or ‘mhyb-split-dlt’.

• -d, --detailed-timing

Time copy in, compute, copy out, and other overhead in generated code. (split-tile
backends only)

20

• -f <arg>, --in <arg>

Embedded SDSL input filename.

• -g --debug

Enable debug statements in generated code.

• -h, --help

Print help message and exit.

• -i <arg>, --isa <arg>

Set vector ISA as ‘sse2 (default)’, ‘sse4’, ‘avx’, ‘xphi’ (experimental), or ‘arm’ (ex-
perimental). (split-tile backends only)

• -l, --legacy-gpu

Generate code for NVIDIA GT2xx and Tesla 10xx GPU. (OverTile backend only)

• -o <arg>, --out <arg>

Output filename.

• -p, --pointer-swap

Use higher performance pointer swaps instead of explicit array copies. (split-tile back-
ends only)

• -s, --sink-reg-loop

Sink outermost “regular” intertile loop to innermost intertile loop level (experimental).
(split-tile backends only)

• -v, --verbose

Output detailed progress

• -x, --extern-c

Use C linkage for wrapper function. This option will place the extern keyword in
front of the C function that wraps generated code and should be used when SDSL
code is embedded in C++. This option prevents link errors associated with C++
name mangling.

5.3 Running the Example Benchmarks

The SDSL compiler provides a number of example codes located in subdirectories of the
$SDSLC INSTALL DIR/share/sdslc/examples directory.

21

5.3.1 CDSC Pipeline

3 stages of the CDSC medical imaging pipeline (denoise, registration, and segmentation) are
included in the $SDSLC INSTALL DIR/share/sdslc/examples/cdsc directory. Also included
is a program that executes the pipeline. A Makefile is provided to build both affine C and
CUDA versions of the codes. The following commands will build each pipeline stage and the
pipeline application. 1

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/cdsc

$ make denoise

$ make register

$ make segment

$ make pipeline

These commands produce affine C++ code, overtile CUDA code, and executables. The affine
versions of the pipeline stages and pipeline application can be executed with the following
commands:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/cdsc

$./denoise-dp-affine

$./register-dp-affine

$./segment-dp-affine

$./pipeline-sp-affine

Similarly, the overtile versions can be executed with the following commands:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/cdsc

$./denoise-dp-overtile

$./register-dp-overtile

$./segment-dp-overtile

$./pipeline-sp-overtile

The *-dp-* codes are double precision; the *-sp-* codes are single precision.

5.3.2 General Benchmarks

A number of general stencil kernels with embedded SDSL implementations are included in
subdirectories of the $SDSLC INSTALL DIR/share/sdslc/examples/general directory. All
codes have both single and double precision versions and both affine C and overtile versions
can be compiled. To build all versions of all benchmarks, execute the following commands:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/general

$ make affine

$ make overtile

1Users of Geforce GTX2xx or Tesla C10xx GPU must change the file
$SDSLC INSTALL DIR/share/sdslc/examples/common.mk to add the --legacy-gpu option to SDSLC FLAGS.

22

Alternatively, each benchmark can be built individually:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/general/<benchmark>

$ make affine

$ make overtile

The benchmark codes may then be executed by executing the following commands:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/general/<benchmark>

Affine single and double precision

$./<benchmark>-sp-affine

$./<benchmark>-dp-affine

Overtile single and double precision

$./<benchmark>-sp-overtile

$./<benchmark>-dp-overtile

Each benchmark computes a reference CPU version followed by the SDSL version. A
correctness check is then performed.

23

24

Chapter 6

SDSL Autotuner Reference

The SDSL compiler package includes a very basic script for autotuning overtile thread block
and tile sizes. This script can be found at $SDSLC INSTALL DIR/bin/autotune-overtile.py.
Ranges for thread block and tile sizes, along with sdslc and nvcc compiler flags are pro-
vided to the script via a configuration file provided by the user. This chapter provides usage
instructions for the autotuner along with instructions for building a configuration file and
instructions for autotuning the included benchmarks.

6.1 Common Case Usage

The autotune script is invoked via the python interpreter as shown below:

$ python $SDSLC INSTALL DIR/bin/autotune-overtile.py autotune.conf test.c

Two arguments are expected by the script. The first is the name of the configuration file
(described in Sec. 6.2) and the second is the name of the embedded SDSL file to be autotuned.

Running the command shown above will generate files with varying thread block and tile
size combinations specified in the gpu clause of any #pragma sdsl begin statements found
in test.c. Each of these files is translated to CUDA C the OverTile backend of sdslc,
compiled by nvcc. The resulting binary is executed and timed1, as shown below:

$ python $SDSLC INSTALL DIR/bin/autotune-overtile.py autotune.conf test.c

Starting autotuning, see ’test.c.autotune.log’ for best results...

#pragma sdsl begin gpu(block:4,4,4 tile:1,1,1 time:1)

1.22 sec

#pragma sdsl begin gpu(block:4,4,4 tile:1,1,2 time:1)

1.18 sec

.

.

#pragma sdsl begin gpu(block:1024,1024,1024 tile:8,8,8 time:1)

1Timing information is generated by the Unix time command-line utility

25

INVALID PARAMETERS AND/OR ERROR

.

.

#pragma sdsl begin gpu(block:4,4,4 tile:1,1,1 time:2)

1.06 sec

.

.

Finished autotuning test.c

During execution, the SDSL pragma associated with a combination of parameters will be
printed to the console, followed by the total time taken to run the input file. There sometimes
may be a message stating INVALID PARAMETERS AND/OR ERROR in place of timing informa-
tion. This is common and reflects situations where specified parameters do not match the
capabilities of the current GPU or lead to other errors that result in a non-zero return value
from the original program.

At any point during autotuning, the fastest code discovered can be found in the files
<base>.autotuned.sdsl.<extension> (SDSL version) and <base>.autotuned.cu (Over-
Tile version). In the above example, these files would be test.autotuned.sdsl.c and
test.autotuned.cu.

6.2 Configuration File Format

The autotune script requires a configuration file provided by the user. A configuration file
for a 2D SDSL program is shown below:

sdslc flags

-b overtile --legacy-gpu

nvcc flags

-O3 -arch=sm_20 -Xcompiler -O3 -I ../include -DNOREF

Space dims

2

Thread block sizes <start end step>

8 512 8

2 64 2

Space tile sizes <start end step>

8 256 8

2 64 2

Time tile sizes <start end step>

26

1 50 2

Comments start with a ‘#’ and extend to the end of the line. Blank lines are ignored. The
first non-comment, non-blank line is the command-line flags passed to sdslc. The next
line are the command-line flags passed to nvcc. After this is the integer number of space
dimensions of the grid used in the SDSL code to be autotuned.

The next group of lines are the thread block sizes. There must be one line for each spatial
dimension. These are composed of three integers: the thread block size to start autotuning,
the thread block size to end autotuning, and the step the thread block size is incremented
by. In the example above, the line ‘8 512 8’ would run the input file with thread block sizes
of 8, 16, 24, ..., 512 for the first spatial dimension. Space tile sizes are specified in the same
way as thread block sizes, with one line per spatial dimension. The final line specifies time
tile size.

6.3 Embedded SDSL File Restrictions

The embedded SDSL file passed to the autotuner must, on exit, return integer 0 for success
and a non-zero integer value for failure. It is suggested that the return value of embedded
SDSL sections (described in Sec. 4.1.3) is used to generate this return value.

If the embedded SDSL file passed to the autotuner contains multiple SDSL sections each
one will be tuned using the same configuration file. This means that all sections must operate
on a grid of the same dimensionality. Further, all sections will, for any run, have identical
thread block and tile sizes. Because of this, we recommend breaking files with multiple SDSL
sections into files with single SDSL sections for autotuning.

6.4 Autotuning the Example Benchmarks

Configuration files and make targets are provided for all of the benchmarks described in
Sec. 5.3. The following two sections describe how to autotune the included example bench-
marks.

6.4.1 CDSC Pipeline

The CDSC medical imaging pipeline benchmarks can be autotuned with the following com-
mands.

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/cdsc

$ make autotune-denoise

$ make autotune-register

$ make autotune-segment

$ make autotune-pipeline

27

The make autotune-<benchmark> command will start the autotune-overtile.py script
for the specified benchmark. The first 3 benchmarks, denoise, register, and segment,
are configured with the autotune-3d.conf file in the CDSC examples directory. The last
benchmark, pipeline, is configured with the autotune-pipeline.conf file in the same
directory.

6.4.2 General Benchmarks

Each general benchmark can be autotuned with the following commands:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/general/<benchmark>

$ make autotune-sp

$ make autotune-dp

All benchmarks are configured with one of the autotune-1d.conf, autotune-2d.conf, or
autotune-3d.conf files located in the $SDSLC INSTALL DIR/share/sdslc/examples/general

directory.

28

Chapter 7

Detailed Example: Rician Denoise

This chapter contains a detailed example of porting a non-trivial stencil, Rician denoising [1],
from C to embedded SDSL. Rician denoising is used to remove a particular type of noise
commonly found in MRI images and is one step in the CDSC medical imaging pipeline. The
complete source code of the example, including the C implementation, SDSL implementation,
driver, and correctness check, can be found in the file
$SDSL INSTALL DIR/share/sdslc/examples/cdsc/denoise-dp.sdsl.cpp.

7.1 C Reference Code

A C function implementing Rician denoising is shown in Fig. 7.1. In this section we describe
the important features of the code; in subsequent sections we port this C code to an equivalent
SDSL version.

7.1.1 Function Signature

The Rician denoise function signature (line 1) is shown below:

int rician3d(double *U, double *F, double sigma, double lambda,

int dim0, int dim1, int dim2)

The rician3d function returns an integer status and takes the following parameters:

• double *U: Pointer to the denoised image (output)

• double *F (0 ≤ F[i][j][k] ≤ 1): Pointer to the original noisy image (input)

• double sigma (> 0): Parameter indicating type of Rician noise expected (input)

• double lambda (≥ 0): Controls denoising strength, smaller lambda implies stronger
denoising (input)

29

1 int rician3d(double *U, double *F, double sigma , double lambda , int dim0 , int dim1 , int dim2) {

2 // U0 , G are local arrays

3 double *U0 = (double *) malloc(dim0*dim1*dim2*sizeof(double));

4 double *G = (double *) malloc(dim0*dim1*dim2*sizeof(double));

5 memset(G, 0, sizeof(double)*dim0*dim1*dim2);

6
7 // Copy F to U

8 memcpy(U, F, dim0*dim1*dim2*sizeof(double));

9
10 // Constants

11 const double DT = 5.0;

12 const double EPSILON = 1.0E-20;

13 const double sigma2 = sigma*sigma;

14 const double gamma = lambda/sigma2;

15
16 // Convergence

17 const int max_iter = 50;

18 const double TOL = 0.00001;

19 bool converged;

20
21 // Macro for 3d indexing

22 #define idx(z,y,x) ((x) + (y)*dim0 + (z)*dim0*dim1)

23 /* Gradient descent loop */

24 for (int t = 0; t < max_iter; ++t) {

25 /* Copy U to U0 */

26 for (int i = 0; i < dim2; ++i) {

27 for (int j = 0; j < dim1; ++j) {

28 for (int k = 0; k < dim0; ++k) {

29 U0[idx(i,j,k)] = U[idx(i,j,k)];

30 }}}

31 /* Approximate G = 1/| grad U| */

32 for (int i = 1; i < dim2 - 1; ++i) {

33 for (int j = 1; j < dim1 - 1; ++j) {

34 for (int k = 1; k < dim0 - 1; ++k) {

35 G[idx(i,j,k)] = 1.0/ sqrt(EPSILON +

36 (U0[idx(i,j,k)] - U0[idx(i,j+1,k)])*(U0[idx(i,j,k)] - U0[idx(i,j+1,k)]) +

37 (U0[idx(i,j,k)] - U0[idx(i,j-1,k)])*(U0[idx(i,j,k)] - U0[idx(i,j-1,k)]) +

38 (U0[idx(i,j,k)] - U0[idx(i,j,k+1)])*(U0[idx(i,j,k)] - U0[idx(i,j,k+1)]) +

39 (U0[idx(i,j,k)] - U0[idx(i,j,k -1)])*(U0[idx(i,j,k)] - U0[idx(i,j,k -1)]) +

40 (U0[idx(i,j,k)] - U0[idx(i+1,j,k)])*(U0[idx(i,j,k)] - U0[idx(i+1,j,k)]) +

41 (U0[idx(i,j,k)] - U0[idx(i-1,j,k)])*(U0[idx(i,j,k)] - U0[idx(i-1,j,k)]));

42 }}}

43 /* Update U by a semi -implict step */

44 converged = true;

45 for (int i = 1; i < dim2 - 1; ++i) {

46 for (int j = 1; j < dim1 - 1; ++j) {

47 for (int k = 1; k < dim0 - 1; ++k) {

48 /* Evaluate r = I1(U*F/sigma ^2) / I0(U*F/sigma ^2)

49 with a cubic rational approximation. */

50 double r = U0[idx(i,j,k)]*F[idx(i,j,k)]/ sigma2;

51 r = (r*(2.38944 + r*(0.950037 + r)))

52 / (4.65314 + r*(2.57541 + r*(1.48937 + r)));

53 /* Update U */

54 U[idx(i,j,k)] = (U0[idx(i,j,k)] +

55 DT*(U0[idx(i,j+1,k)]*G[idx(i,j+1,k)] +

56 U0[idx(i,j-1,k)]*G[idx(i,j-1,k)] +

57 U0[idx(i,j,k+1)]*G[idx(i,j,k+1)] +

58 U0[idx(i,j,k-1)]*G[idx(i,j,k-1)] +

59 U0[idx(i+1,j,k)]*G[idx(i+1,j,k)] +

60 U0[idx(i-1,j,k)]*G[idx(i-1,j,k)] +

61 gamma*F[idx(i,j,k)]*r))

62 /

63 (1.0 + DT*(G[idx(i,j+1,k)] + G[idx(i,j-1,k)] +

64 G[idx(i,j,k+1)] + G[idx(i,j,k-1)] +

65 G[idx(i+1,j,k)] + G[idx(i-1,j,k)] +

66 gamma));

67 if (fabs(U0[idx(i,j,k)] - U[idx(i,j,k)]) > TOL) {

68 converged = false;

69 }

70 }}}

71 if (converged) {

72 break;

73 }

74 }

75 #undef idx

76 free(U0);

77 free(G);

78 return 0;

79 }

Figure 7.1: Rician denoising, Original C implementation.

30

• int dim0, int dim1, int dim2: Dimension sizes of U and F (e.g. U[dim2][dim1][dim0])
(input)

We will create a drop-in replacement for this function in C and SDSL.

7.1.2 Arrays

In addition to the arrays passed as parameters, temporary arrays U0 and G are allocated on
lines 3 and 4. Array U0 is used to hold intermediate values of the denoised image U in a
Jacobi iteration. Array G is used to hold the result of a curvature approximation as described
in [1]. The output image U is initialized to the value of the input image F on line 11. All
arrays are 1D data structures interpreted as 3D data structures and are accessed with the
indexing macro defined on line 22.

7.1.3 Constants and Variables

Lines 11–14 in Fig. 7.1 contain the declarations of a number of constants. DT, EPSILON,
sigma2, and gamma are used throughout the denoise calculation. The purpose of these
variables is beyond the scope of this document; please see [1] for more details.

Lines 17–19 contain declarations and definitions that control how many times the denoise
operation will run. max iter is the maximum number of iterations the denoise operation can
run. TOL, defined on line 18, is used in the convergence check on line 67. Semantically, TOL
is the maximum absolute difference allowed between U[i][j][k] and U0[i][j][k] for all 0
< i < dim2, 0 < j < dim1, 0 < k < dim0 for the denoise operation to converge. Whether
or not the denoising has converged is tracked by the boolean variable converged, defined on
line 19.

7.1.4 Main Iterative Loop

The main loop nest for Rician denoising runs from lines 24–74 in Fig. 7.1. The outer loop
runs, at most, for max iter=50 iterations, and has four phases:

• U copy (lines 26–30) — Copies U to U0 temp array

• G stencil (lines 32–42) — Computes value for G using a stencil on U0

• U stencil (lines 45–70) — Computes value for U using a stencil on U0, G, and F

• Convergence check (lines 71–73) — Breaks out of the main loop if U converged

The U copy phase simply copies the contents of array U to U0 as part of the Jacobi iteration.
The G stencil, U stencil, and convergence check are described in Sec. 7.1.5, Sec. 7.1.6, and
Sec. 7.1.7, respectively.

31

7.1.5 G Stencil

The G stencil computes values for all elements of the G array except the first and last el-
ements in each dimension. Values for array element G[i][j][k] are computed with a 7-
point 3D stencil on array U0 using a center element (U0[i][j][k]) and its neighbors along
each spatial dimension (U0[i-1][j][k], U0[i+1][j][k], U0[i][j-1][k], U0[i][j+1][k],
U0[i][j][k-1], and U0[i][j][k+1]). While the loop body statement appears to use sub-
stantially more than 7 points, close examination reveals that there are six subexpressions of
the form (center−neighbor)2 using each of the 7 stencil points multiple times.

7.1.6 U Stencil

The U stencil computes values for all elements of the U array except the first and last elements
in each dimension. For each element of U[i][j][k] a scalar value r is computed using
U0[i][j[k] and F[i][j[k] at lines 50–52. This is followed by an update of U at lines 54–66
using a 7-point 3D stencil on U0. This stencil is the same “center and neighbors in each
dimension” pattern as described in Sec. 7.1.5. The U update also uses a 6-point 3D stencil
on G that is the same shape as above without the center point. After each element of U is
computed, at lines 67–69 the result is compared to the previous value of U (stored in U0) to
check for convergence.

7.1.7 Convergence Check

At lines 71–73 the converged flag, set at lines 44 and 68, is checked. If the absolute difference
between successive values of U at any given element was greater than TOL then the converge
flag will be set to false at line 68 and the main loop will continue executing. If, however,
absolute difference for every computed value of U and its predecessor in U0 was less than TOL

the converged flag is never set to false and the calculation is considered to be converged.
Control flow breaks from the main loop at line 72 and proceeds to cleanup.

7.2 Creating a C/SDSL Skeleton Function

We wish to create a drop-in replacement for the Rician denoise C function described in
Sec. 7.1. We begin by creating a thin C wrapper function around an empty #pragma sdsl as
shown in Fig. 7.2. The function from Fig. 7.1 is renamed to sdsl rician3d and its signature

1 int sdsl_rician3d(double *U, double *F, double sigma , double lambda ,

2 int dim0 , int dim1 , int dim2) {

3 #pragma sdsl begin gpu(block :4,4,4 tile:4,4,4 time :1)

4 #pragma sdsl end

5 return 0;

6 }

Figure 7.2: C/SDSL skeleton function

32

is preserved. Begin and end SDSL pragmas are added, with the begin pragma including the
optional gpu(...) clause to specify options for OverTile codegen. We arbitrarily set thread
block sizes at 4 in each dimension, spatial tile sizes at 4 in each dimension, and time tile size
at 1. These parameter values will be autotuned in Sec. 7.7.

7.3 Passing Data from C to SDSL

With the skeleton in place, we need to pass parameters and arrays from C to SDSL.

7.3.1 Parameters and Constants

We begin by declaring SDSL parameters for each of the function parameters as shown in
Fig. 7.3. Lines 5–9 contain SDSL parameter declarations binding the declared parameters
to identically named C variables.1 Lines 12–16 declare and define a number of constants in
SDSL that are not passed in from C.

1 int sdsl_rician3d(double *U, double *F, double sigma , double lambda ,

2 int dim0 , int dim1 , int dim2) {

3 #pragma sdsl begin gpu(block :4,4,4 tile:4,4,4 time :1)

4 // Parameters

5 int dim0;

6 int dim1;

7 int dim2;

8 double sigma;

9 double lambda;

10
11 // Constants

12 double DT = 5.0;

13 double EPSILON = 1.0E-20;

14 double sigma2 = sigma*sigma;

15 double gamma = lambda/sigma2;

16 double TOL = 0.00001;

17 #pragma sdsl end

18 return 0;

19 }

Figure 7.3: Parameters passed from C to SDSL, constants defined in SDSL.

7.3.2 Arrays

The SDSL source with all code to pass the example arrays is shown in Fig. 7.4. Passing
arrays from C to SDSL requires both C and SDSL code. In C, on lines 4–5 we declare the
temporary array G and initialize its contents to 0. Line 8 initializes the contents of U, the
denoised output image, with the contents of F, the noisy input image. Note that U0 is not
declared or defined in C.

In SDSL, line 26 declares a grid g with with the same dimension sizes as the C arrays
being passed. Lines 28–30 contain SDSL griddata declarations for U, G, and F. U is defined
on 2 timesteps, representing arrays U0 and U from the original C code. G and F are defined
on 1 timestep.

1 Parameters dim0, dim1, and dim2 must be declared first and in that order since they will be used as
dimensions of a grid (shown in Fig. 7.4). See Sec.8.3 for more details.

33

1 int sdsl_rician3d(double *U, double *F, double sigma , double lambda ,

2 int dim0 , int dim1 , int dim2) {

3 // G is a local array

4 double *G = (double *) malloc(dim0*dim1*dim2*sizeof(double));

5 memset(G, 0, sizeof(double)*dim0*dim1*dim2);

6
7 // Copy F to U

8 memcpy(U, F, dim0*dim1*dim2*sizeof(double));

9
10 #pragma sdsl begin gpu(block :4,4,4 tile:4,4,4 time :1)

11 // Parameters

12 int dim0;

13 int dim1;

14 int dim2;

15 double sigma;

16 double lambda;

17
18 // Constants

19 double DT = 5.0;

20 double EPSILON = 1.0E-20;

21 double sigma2 = sigma*sigma;

22 double gamma = lambda/sigma2;

23 double TOL = 0.00001;

24
25 // Grid and griddata

26 grid g[dim2][dim1][dim0];

27
28 double griddata U on g at 0,1;

29 double griddata G on g at 0;

30 double griddata F on g at 0;

31 #pragma sdsl end

32 free(G);

33 return 0;

34 }

Figure 7.4: Arrays passed from C to SDSL.

7.4 Implementing pointfunctions

For Rician denoise we use separate pointfunctions to perform the stencil computations that
produce elements of G and U. The next two sections describe the SDSL used to implement
these stencil computations.

7.4.1 approx g

The approx g pointfunction is shown on lines 32–40 of Fig. 7.5. This pointfunction

implements the “G stencil” described in Sec. 7.1.5. At line 32 the pointfunction is declared
as taking two griddata parameters, u and g. Lines 33–39 contain a single statement that
calculates a point of g using neighbor points from u.

Note that the griddata references in this statement address points via offsets from the
current timestep and point, e.g. [0]u[-1][0][0] is the value of u at the current timestep
(U0 from the original) offset from the current point by -1, 0, and 0 in the three spatial
dimensions. Further note that the statement uses the sqrt() function from math.h, thereby
taking advantage of math.h function availability in SDSL. Finally, note that the constant
EPSILON is used without including it as a parameter. This is required; all parameters to
a pointfunction must be griddata. All constants and parameters are available within a
pointfunction.

34

1 int sdsl_rician3d(double *U, double *F, double sigma , double lambda ,

2 int dim0 , int dim1 , int dim2) {

3 // G is a local array

4 double *G = (double *) malloc(dim0*dim1*dim2*sizeof(double));

5 memset(G, 0, sizeof(double)*dim0*dim1*dim2);

6
7 // Copy F to U

8 memcpy(U, F, dim0*dim1*dim2*sizeof(double));

9
10 #pragma sdsl begin gpu(block :4,4,4 tile:4,4,4 time :1)

11 // Parameters

12 int dim0;

13 int dim1;

14 int dim2;

15 double sigma;

16 double lambda;

17
18 // Constants

19 double DT = 5.0;

20 double EPSILON = 1.0E-20;

21 double sigma2 = sigma*sigma;

22 double gamma = lambda/sigma2;

23 double TOL = 0.00001;

24
25 // Grid and griddata

26 grid g[dim2][dim1][dim0];

27
28 double griddata U on g at 0,1;

29 double griddata G on g at 0;

30 double griddata F on g at 0;

31
32 pointfunction approx_g(u,g) {

33 [0]g[0][0][0] = 1.0 / sqrt(EPSILON +

34 ([0]u[0][0][0] - [0]u[0][1][0]) * ([0]u[0][0][0] - [0]u[0][1][0]) +

35 ([0]u[0][0][0] - [0]u[0][-1][0]) * ([0]u[0][0][0] - [0]u[0][-1][0]) +

36 ([0]u[0][0][0] - [0]u[0][0][1]) * ([0]u[0][0][0] - [0]u[0][0][1]) +

37 ([0]u[0][0][0] - [0]u[0][0][-1]) * ([0]u[0][0][0] - [0]u[0][0][-1]) +

38 ([0]u[0][0][0] - [0]u[1][0][0]) * ([0]u[0][0][0] - [0]u[1][0][0]) +

39 ([0]u[0][0][0] - [0]u[-1][0][0]) * ([0]u[0][0][0] - [0]u[-1][0][0]));

40 }

41 #pragma sdsl end

42 free(G);

43 return 0;

44 }

Figure 7.5: Point function to calculate values of G.

7.4.2 update u

The SDSL highlighted at lines 42–62 of Fig. 7.6 corresponds to the “U stencil” described
in Sec. 7.1.6. This pointfunction is defined starting at line 42 and takes three griddata

parameters, u, g, and f. Lines 44–45 compute the local variable r, while lines 46–61 are a
single statement used to compute the value of the current point of u at the next timestep,
[1]u[0][0][0].

7.5 Defining the Iterate

Fig. 7.7 shows the complete replacement for the reference Rician denoise code. Lines 64–74
define an iterate that implements the main iterative loop control described in Sec. 7.1.4.
Line 64 specifies that the iterate runs for at most 50 iterations.2 Subsequent sections describe
the stencils, reduction, and convergence check used in the iterate.

2The literal integer value ‘50’ is used to specify the number of maximum iterations instead of a constant
or parameter, e.g. max iter. This is due to a known limitation with the current SDSL implementation noted
in Sec. 8.1.

35

1 int sdsl_rician3d(double *U, double *F, double sigma , double lambda ,

2 int dim0 , int dim1 , int dim2) {

3 // G is a local array

4 double *G = (double *) malloc(dim0*dim1*dim2*sizeof(double));

5 memset(G, 0, sizeof(double)*dim0*dim1*dim2);

6
7 // Copy F to U

8 memcpy(U, F, dim0*dim1*dim2*sizeof(double));

9
10 #pragma sdsl begin gpu(block :4,4,4 tile:4,4,4 time :1)

11 // Parameters

12 int dim0;

13 int dim1;

14 int dim2;

15 double sigma;

16 double lambda;

17
18 // Constants

19 double DT = 5.0;

20 double EPSILON = 1.0E-20;

21 double sigma2 = sigma*sigma;

22 double gamma = lambda/sigma2;

23 double TOL = 0.00001;

24
25 // Grid and griddata

26 grid g[dim2][dim1][dim0];

27
28 double griddata U on g at 0,1;

29 double griddata G on g at 0;

30 double griddata F on g at 0;

31
32 pointfunction approx_g(u,g) {

33 [0]g[0][0][0] = 1.0 / sqrt(EPSILON +

34 ([0]u[0][0][0] - [0]u[0][1][0]) * ([0]u[0][0][0] - [0]u[0][1][0]) +

35 ([0]u[0][0][0] - [0]u[0][-1][0]) * ([0]u[0][0][0] - [0]u[0][-1][0]) +

36 ([0]u[0][0][0] - [0]u[0][0][1]) * ([0]u[0][0][0] - [0]u[0][0][1]) +

37 ([0]u[0][0][0] - [0]u[0][0][-1]) * ([0]u[0][0][0] - [0]u[0][0][-1]) +

38 ([0]u[0][0][0] - [0]u[1][0][0]) * ([0]u[0][0][0] - [0]u[1][0][0]) +

39 ([0]u[0][0][0] - [0]u[-1][0][0]) * ([0]u[0][0][0] - [0]u[-1][0][0]));

40 }

41
42 pointfunction update_u(u,g,f) {

43 double r = [0]u[0][0][0]*[0]f[0][0][0]/ sigma2;

44 r =(r*(2.38944 + r*(0.950037 + r)))

45 / (4.65314 + r*(2.57541 + r*(1.48937 + r)));

46 [1]u[0][0][0] = ([0]u[0][0][0] +

47 DT*([0]u[0][1][0]*[0]g[0][1][0] +

48 [0]u[0][-1][0]*[0]g[0][-1][0] +

49 [0]u[0][0][1]*[0]g[0][0][1] +

50 [0]u[0][0][-1]*[0]g[0][0][-1] +

51 [0]u[1][0][0]*[0]g[1][0][0] +

52 [0]u[-1][0][0]*[0]g[-1][0][0] +

53 gamma *[0]f[0][0][0]*r))

54 /

55 (1.0 + DT*[0]g[0][1][0] +

56 [0]g[0][-1][0] +

57 [0]g[0][0][1] +

58 [0]g[0][0][-1] +

59 [0]g[1][0][0] +

60 [0]g[-1][0][0] +

61 gamma);

62 }

63 #pragma sdsl end

64 free(G);

65 return 0;

66 }

Figure 7.6: Point function to calculate values of U.

7.5.1 Stencils

The iterate contains two stencils. stencil gs, defined on lines 65–67, corresponds
to the code described in Sec. 7.1.5; stencil us, defined on lines 68–70, corresponds to
the loop nest described in Sec. 7.1.6. Each stencil defines a single region over which it is
applied, [1:dim2-2][1:dim1-2][1:dim0-2]. This region corresponds to the spatial loop
bounds of the original G and U stencils located at lines 32–34 and 45–47 of the original

36

1 int sdsl_rician3d(double *U, double *F, double sigma , double lambda ,

2 int dim0 , int dim1 , int dim2) {

3 // G is a local array

4 double *G = (double *) malloc(dim0*dim1*dim2*sizeof(double));

5 memset(G, 0, sizeof(double)*dim0*dim1*dim2);

6
7 // Copy F to U

8 memcpy(U, F, dim0*dim1*dim2*sizeof(double));

9
10 #pragma sdsl begin gpu(block :4,4,4 tile:4,4,4 time :1)

11 // Parameters

12 int dim0;

13 int dim1;

14 int dim2;

15 double sigma;

16 double lambda;

17
18 // Constants

19 double DT = 5.0;

20 double EPSILON = 1.0E-20;

21 double sigma2 = sigma*sigma;

22 double gamma = lambda/sigma2;

23 double TOL = 0.00001;

24
25 // Grid and griddata

26 grid g[dim2][dim1][dim0];

27
28 double griddata U on g at 0,1;

29 double griddata G on g at 0;

30 double griddata F on g at 0;

31
32 pointfunction approx_g(u,g) {

33 [0]g[0][0][0] = 1.0 / sqrt(EPSILON +

34 ([0]u[0][0][0] - [0]u[0][1][0]) * ([0]u[0][0][0] - [0]u[0][1][0]) +

35 ([0]u[0][0][0] - [0]u[0][-1][0]) * ([0]u[0][0][0] - [0]u[0][-1][0]) +

36 ([0]u[0][0][0] - [0]u[0][0][1]) * ([0]u[0][0][0] - [0]u[0][0][1]) +

37 ([0]u[0][0][0] - [0]u[0][0][-1]) * ([0]u[0][0][0] - [0]u[0][0][-1]) +

38 ([0]u[0][0][0] - [0]u[1][0][0]) * ([0]u[0][0][0] - [0]u[1][0][0]) +

39 ([0]u[0][0][0] - [0]u[-1][0][0]) * ([0]u[0][0][0] - [0]u[-1][0][0]));

40 }

41
42 pointfunction update_u(u,g,f) {

43 double r = [0]u[0][0][0]*[0]f[0][0][0]/ sigma2;

44 r =(r*(2.38944 + r*(0.950037 + r)))

45 / (4.65314 + r*(2.57541 + r*(1.48937 + r)));

46 [1]u[0][0][0] = ([0]u[0][0][0] +

47 DT*([0]u[0][1][0]*[0]g[0][1][0] +

48 [0]u[0][-1][0]*[0]g[0][-1][0] +

49 [0]u[0][0][1]*[0]g[0][0][1] +

50 [0]u[0][0][-1]*[0]g[0][0][-1] +

51 [0]u[1][0][0]*[0]g[1][0][0] +

52 [0]u[-1][0][0]*[0]g[-1][0][0] +

53 gamma *[0]f[0][0][0]*r))

54 /

55 (1.0 + DT*[0]g[0][1][0] +

56 [0]g[0][-1][0] +

57 [0]g[0][0][1] +

58 [0]g[0][0][-1] +

59 [0]g[1][0][0] +

60 [0]g[-1][0][0] +

61 gamma);

62 }

63
64 iterate 50 {

65 stencil gs {

66 [1:dim2 -2][1: dim1 -2][1: dim0 -2] : approx_g(U,G);

67 }

68 stencil us {

69 [1:dim2 -2][1: dim1 -2][1: dim0 -2] : update_u(U,G,F);

70 }

71 reduction max_diff max {

72 [1:dim2 -2][1: dim1 -2][1: dim0 -2] : fabs ([1]U[0][0][0] - [0]U[0][0][0]);

73 }

74 } check (max_diff < TOL) every 10 iterations

75 #pragma sdsl end

76 free(G);

77 return 0;

78 }

Figure 7.7: Complete SDSL function contains iterate with stencils, reduction, and conver-
gence check.

37

C implementation in Fig. 7.1. At each point of the defined region, both stencils call the
appropriate pointfunction. At line 66 approx g is called with griddata parameters U and
G. At line 69 update u is called with griddata parameters U, G, and F

7.5.2 reduction

The reduction defined at lines 71–73 of Fig. 7.7 is responsible for computing the absolute dif-
ference between successive values of U over all points in [1:dim2-2][1:dim1-2][1:dim0-2].
Instead of computing these differences per point as the U stencil is being executed, as de-
scribed in Sec. 7.1.6, the reduction performs a separate sweep of the region and stores
the maximum absolute difference in the reduction variable max diff using the reduction
operation max. The value of max diff is subsequently used in the convergence check at line
74.

7.5.3 Convergence Check

The convergence check for the SDSL version of Rician denoise is defined at line 74 of Fig. 7.7.
It specifies that if the reduction variable max diff is less than the constant TOL the iterate

should terminate. It is specified that this check occurs every 10 iterations.3 By increasing the
number of iterations between convergence checks we enable the sdslc compiler to perform
aggressive time tiling optimizations. If the exact behavior of the original Denoise implemen-
tation was desired, we would modify the convergence check to occur every 1 iterations

7.6 Generating Code

The Rician denoise functions shown in Fig. 7.1 and Fig. 7.7 are combined with the driver
shown in Fig. 7.8 and accessory functions for timing and correctness checks (not shown) to
produce a complete program suitable for compilation and execution. This file can be found
at $SDSLC INSTALL DIR/share/sdslc/examples/cdsc/denoise-dp.sdsl.cpp, along with
a Makefile for generating and building the code.

To manually generate affine C code from the SDSL source, the following command would
be run:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/cdsc/

$ sdslc -b affine-c denoise-dp.sdsl.cpp -o denoise-dp.affine.cpp

To manually generate OverTile CUDA code from the SDSL source, the following com-
mand would be run:

$ cd $SDSLC INSTALL DIR/share/sdslc/examples/cdsc/

$ sdslc -b overtile denoise-dp.sdsl.cpp -o denoise-dp.overtile.cu

3The literal integer value ‘10’ is used to specify the number of iterations between convergence checks
instead of a constant or parameter. This is due to a known limitation with the current SDSL implementation
noted in Sec. 8.1.

38

1 int main() {

2 // Problem size

3 const int dim0 = 128;

4 const int dim1 = 128;

5 const int dim2 = 128;

6
7 // Timing

8 double start , finish;

9
10 // Data arrays

11 double *U = (double *) malloc(dim0*dim1*dim2*sizeof(double));

12 double *F = (double *) malloc(dim0*dim1*dim2*sizeof(double));

13 #ifdef CHECK_REF

14 double *Uref = (double *) malloc(dim0*dim1*dim2*sizeof(double));

15 double *Fref = (double *) malloc(dim0*dim1*dim2*sizeof(double));

16 #endif

17
18 // Populate arrays with random values

19 srand (45);

20 for (int i = 0; i < dim0*dim1*dim2; ++i) {

21 F[i] = (double)rand() / (double)(RAND_MAX);

22 #ifdef CHECK_REF

23 Fref[i] = F[i];

24 #endif

25 }

26
27 #ifdef CHECK_REF

28 // Reference denoise call

29 start = timestamp ();

30 int ref_ret = rician3d(Uref , Fref , 0.05, 0.065, dim0 , dim1 , dim2);

31 finish = timestamp ();

32 printf (" REF: %.6f sec\n",finish -start);

33 #endif

34
35 // SDSL denoise call

36 start = timestamp ();

37 int sdsl_ret = sdsl_rician3d(U, F, 0.05, 0.065, dim0 , dim1 , dim2);

38 finish = timestamp ();

39 printf ("SDSL: %.6f sec\n",finish -start);

40
41 #ifdef CHECK_REF

42 // Check results

43 check(Uref ,U,dim0 ,dim1 ,dim2);

44 #endif

45
46 // Cleanup

47 free(U);

48 free(F);

49 #ifdef CHECK_REF

50 free(Uref);

51 free(Fref);

52 #endif

53 return sdsl_ret;

54 }

Figure 7.8: Driver code.

7.7 Autotuning OverTile Parameters for GPU

In Sec. 7.2 the OverTile thread block sizes, space tile sizes, and time tile size were arbitrarily
set as shown below:

#pragma sdsl begin gpu(block:4,4,4 tile:4,4,4 time:1)

Achieving high performance with OverTile codes requires that these parameters be tuned
for the the specific GPU architecture the code is running on. In the following sections we
autotune these parameters for the Rician denoise SDSL code developed in Sec. 7.2-Sec. 7.5.
We slightly alter the sdsl rician3d() function shown in Fig. 7.7 to return sdsl return 0

(instead of 0) so that CUDA kernel launches with invalid configurations can be detected by
the autotuner.

39

7.7.1 Building the Configuration File

The SDSL autotuner works by systematically varying thread block sizes, space tile sizes,
and time tile sizes according to a configuration file. This section explains the autotuner
configuration file shown in Fig. 7.9. This file is also included in the SDSLC distribution and
can be found at $SDSLC INSTALL DIR/share/sdslc/examples/cdsc/autotune-3d.conf.

1 # sdslc flags

2 -b overtile

3
4 # nvcc flags

5 -O3 -arch=compute_30 -code=sm_30 -Xcompiler -O3 -DSTANDALONE_DRIVER

6
7 # Space dims

8 3

9
10 # Thread block sizes <start end step >

11 4 8 2

12 4 8 2

13 4 8 2

14
15 # Space tile sizes <start end step >

16 1 4 1

17 1 4 1

18 1 4 1

19
20 # Time tile sizes <start end step >

21 1 1 1

Figure 7.9: Autotuner configuration file.

Line 2 of the configuration file tells the autotuner to run the OverTile backend for the
sdslc compiler. Line 4 tells the autotuner to run nvcc at optimization level 3 for CUDA
devices of compute capability 3.0 and to build the standalone driver code shown in Fig. 7.8.
Line 8 gives the number of spatial dimensions we are autotuning. Lines 11–13 tell the
autotuner to vary thread block sizes in each dimension from 4 to 8 with a step size of 2.
Lines 16–18 tell the autotuner to vary space tile sizes in each dimension from 1 to 4 with
a step size of 1. Finally, line 21 tells the autotuner to only use a time tile sizes of 1. This
configuration results in 33 ∗ 43 ∗ 1 = 1728 separate invocations of the Rician denoise kernel.

7.7.2 Running the Autotuner

Execute the following command, from the CDSC examples directory, to begin autotuning:

$ python ../../../../bin/autotune-overtile.py autotune-3d.conf

denoise-dp.sdsl.cpp

Running the above command will take a substantial amount of time. On a Tesla K10,
for example, this autotune configuration takes approximately 2 hours and 15 minutes to
complete.

7.7.3 Examining the Autotuner Results

Running the command in Sec. 7.7.2 continually updates stdout with its progress, including
the specific pragma values being used for an invocation of the denoise kernel, timing infor-

40

mation, and error information. Throughout the run, and at the end of the run, three files
are available:

• denoise-dp.sdsl.cpp.autotune.log – Autotuner log

• denoise-dp.sdsl.autotuned.sdsl.cpp – Autotuned SDSL file

• denoise-dp.sdsl.autotuned.cu – Autotuned CUDA file

The file denoise-dp.sdsl.cpp.autotune.log, shown in Fig. 7.10, contains the fastest runs
encountered by the autotuner. As the autotuner is executing, the current run is compared
to the fastest run executed to that point. If the current run is faster, the associated pragma
and timing information are appended to the log.

1 #pragma sdsl begin gpu(block :4,4,4 tile:1,1,1 time :1)

2 2.7

3 #pragma sdsl begin gpu(block :4,4,4 tile:1,1,2 time :1)

4 2.28

5 #pragma sdsl begin gpu(block :4,4,6 tile:1,1,1 time :1)

6 2.07

7 #pragma sdsl begin gpu(block :4,4,6 tile:1,1,2 time :1)

8 1.98

9 #pragma sdsl begin gpu(block :4,4,6 tile:1,2,1 time :1)

10 1.79

11 #pragma sdsl begin gpu(block :4,4,8 tile:1,2,1 time :1)

12 1.58

13 #pragma sdsl begin gpu(block :4,4,8 tile:2,2,1 time :1)

14 1.54

15 #pragma sdsl begin gpu(block :4,6,6 tile:2,1,1 time :1)

16 1.49

17 #pragma sdsl begin gpu(block :4,6,8 tile:2,1,1 time :1)

18 1.41

19 #pragma sdsl begin gpu(block :4,8,6 tile:2,1,1 time :1)

20 1.4

21 #pragma sdsl begin gpu(block :4,8,8 tile:2,1,1 time :1)

22 1.18

23 #pragma sdsl begin gpu(block :6,8,8 tile:1,1,2 time :1)

24 1.15

25 #pragma sdsl begin gpu(block :6,8,8 tile:2,1,1 time :1)

26 1.1

27 #pragma sdsl begin gpu(block :8,4,8 tile:1,2,1 time :1)

28 1.09

29 #pragma sdsl begin gpu(block :8,6,8 tile:1,2,1 time :1)

30 1.05

31 #pragma sdsl begin gpu(block :8,8,6 tile:1,1,2 time :1)

32 1.04

Figure 7.10: Contents of denoise-dp.sdsl.cpp.autotune.log after running on a Tesla
K10. The final entry at lines 31–32 was the fastest run.

The file denoise-dp.sdsl.autotuned.sdsl.cpp substitutes the original #pragma sdsl

begin gpu(block:4,4,4 tile:4,4,4 time:1) directive (line 10 of Fig. 7.7) with the pragma
corresponding to the fastest run encountered during autotuning (line 31 of Fig. 7.10). Other
than this, the code is identical to the source in denoise-dp.sdsl.sdsl.cpp.

Finally, the file denoise-dp.sdsl.autotuned.cu is the result of running the autotuned
SDSL file through sdslc with the options specified at line 2 of Fig. 7.9.

41

42

Chapter 8

Known Limitations

8.1 General

• Only one grid may be defined in an SDSL program

• griddata may only be defined on timesteps 0 and 1

• iterate and check ... every trip counts must be integer literals

• Parameters, constants, grids, griddata, point function parameters, point function vari-
ables, and reduction variables all share the same namespace thus identifiers must be
unique. For example, you cannot declare a constant float pi = 3.14f and in a point
function definition declare a local variable float pi = 3.1415f

• Xeon Phi backend (sdslc -b xphi) is experimental and may produce incorrect results

• ARM backend (sdslc -b arm) is experimental and may produce incorrect results

• Sinking the outermost intertile loop (sdslc -s) is experimental and may produce
incorrect results.

8.2 Affine C Backend

• No known issues.

8.3 OverTile Backend

• Grid sizes must be parameters.

– Grid size parameter declarations must be the first statements in an SDSL program.

43

– Grid size parameters must be declared in order from outermost to innermost,
e.g. the grid declaration ‘grid g[dim1][dim0]’ must have the ‘int dim0; int

dim1;’ as the first two SDSL statements.

• check ... every ... iterations trip count must be an integer multiple of over-
tile time tile size as specified in the gpu clause of the opening sdsl pragma.

• iterate trip count must be an integer multiple of check ... every ... iterations

trip count.

8.4 Nested Split-tiling DLT Backend

• Inverted tile size in the fastest varying dimension must be greater than or equal to 2,
that is, in generated source code SDSL INV TILE SIZE 0 ≥ 2.

• Inverted tile size in the fastest varying dimension must be greater than the negative of
any computed statement alpha offset in the fastest varying dimension. In other words,
in generated source code SDSL INV TILE SIZE 0 > O ALPHA Sn 0 for all statements Sn.

This condition guarantees that all statement instances in the initial and final partial
inverted tiles are executed. This is an implementation limitation and could be elim-
inated by implementing (substantially more complicated) boundary code that allows
either upright, inverted, or upright and inverted tiles to cross the DLT boundary.

• For any split-tiled dimension d other than the fastest varying, the following inequality
must hold:

Nd%(UPR TILE SIZE d+INV TILE SIZE d) > −O BETA Sn d

Nd is the size of the dimension, O BETA Sn d is the calculated beta offset in dimen-
sion d of any statement in the program, and tile sizes are INV TILE SIZE d and
UPR TILE SIZE DIM d.

This condition guarantees execution of all statement instances in the final tile of a
non-fastest varying dimension. This is an implementation limitation and be fixed by
peeling the final tile iteration and treating violation of this condition as a special case.

• Repeated calls to the same point function may result in errors. This is a bug.

8.5 Hybrid Split-tiling DLT Backend

• See all items in Section 8.4.

44

Bibliography

[1] Getreuer, P. riciandenoise: 2d and 3d total variation based Rician denoising. http:

//cdsc-image-processing-pipeline.googlecode.com/files/riciandenoise.pdf.

[2] Henretty, T., Stock, K., Pouchet, L.-N., Franchetti, F., Ramanujam, J.,
and Sadayappan, P. Data layout transformation for stencil computations on short-
vector simd architectures. In Compiler Construction, J. Knoop, Ed., vol. 6601 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 225–245.

[3] Henretty, T., Veras, R., Franchetti, F., Pouchet, L.-N., Ramanujam, J.,
and Sadayappan, P. A stencil compiler for short-vector simd architectures. In Pro-
ceedings of the 27th International ACM Conference on International Conference on Su-
percomputing (New York, NY, USA, 2013), ICS ’13, ACM, pp. 13–24.

[4] Holewinski, J., Pouchet, L.-N., and Sadayappan, P. High-performance code
generation for stencil computations on GPU architectures. In Proceedings of the 26th
ACM International Conference on Supercomputing (New York, NY, USA, 2012), ICS
’12, ACM, pp. 311–320.

[5] Marsa, R., and Choptuik, M. The RNPL user’s guide. http://laplace.physics.
ubc.ca/People/arman/files/RNPL_ref.pdf.

[6] Marsa, R. L., Wilson, A. G., and Choptuik, M. W. SNPL reference manual.
http://laplace.physics.ubc.ca/People/agwilson/SNPL/snplref2.pdf.

[7] Pouchet, L.-N. PoCC: the polyhedral compiler collection. http://pocc.

sourceforge.net.

[8] Pouchet, L.-N. Polyopt/C: A polyhedral optimizer for the ROSE compiler. http:

//www.cs.ucla.edu/~pouchet/software/polyopt.

45

http://cdsc-image-processing-pipeline.googlecode.com/files/riciandenoise.pdf
http://cdsc-image-processing-pipeline.googlecode.com/files/riciandenoise.pdf
http://laplace.physics.ubc.ca/People/arman/files/RNPL_ref.pdf
http://laplace.physics.ubc.ca/People/arman/files/RNPL_ref.pdf
http://laplace.physics.ubc.ca/People/agwilson/SNPL/snplref2.pdf
http://pocc.sourceforge.net
http://pocc.sourceforge.net
http://www.cs.ucla.edu/~pouchet/software/polyopt
http://www.cs.ucla.edu/~pouchet/software/polyopt

	Introduction
	Installation
	Required Software
	Building and Installing
	Quick Start

	SDSL Language Reference
	Introduction to the Running Example
	Language Features
	Comments
	Literal Values
	Identifiers
	Arithmetic Expressions
	Parameters and Constants
	Grids
	Grid Data
	Grid Data References
	Grid Subsets
	Point Functions
	Iterate and Check Every
	Stencils
	Reductions

	Embedded SDSL
	Embedding SDSL in C/C++
	#pragma sdsl
	Parameter and Array Passing
	Return Values

	Embedding SDSL in MATLAB

	SDSL Compiler Reference
	Common Case Usage
	SDSL embedded in C/C++
	SDSL embedded in MATLAB

	Command Line Options
	Running the Example Benchmarks
	CDSC Pipeline
	General Benchmarks

	SDSL Autotuner Reference
	Common Case Usage
	Configuration File Format
	Embedded SDSL File Restrictions
	Autotuning the Example Benchmarks
	CDSC Pipeline
	General Benchmarks

	Detailed Example: Rician Denoise
	C Reference Code
	Function Signature
	Arrays
	Constants and Variables
	Main Iterative Loop
	G Stencil
	U Stencil
	Convergence Check

	Creating a C/SDSL Skeleton Function
	Passing Data from C to SDSL
	Parameters and Constants
	Arrays

	Implementing pointfunctions
	approx_g
	update_u

	Defining the Iterate
	Stencils
	reduction
	Convergence Check

	Generating Code
	Autotuning OverTile Parameters for GPU
	Building the Configuration File
	Running the Autotuner
	Examining the Autotuner Results

	Known Limitations
	General
	Affine C Backend
	OverTile Backend
	Nested Split-tiling DLT Backend
	Hybrid Split-tiling DLT Backend

	Bibliography

