
PolyOpt/Fortran
A Polyhedral Optimizer for Fortran in the ROSE compiler

Edition 0.1, for PolyOpt/Fortran 0.1.0
Feb 21st 2012

Louis-Noël Pouchet
Mohanish Narayan

This manual is dedicated to PolyOpt/Fortran version 0.1.0, a framework for Polyhedral
Optimization for Fortran in the ROSE compiler.

Copyright c© 2009-2012 Louis-Noël Pouchet / the Ohio State University.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software Founda-
tion. To receive a copy of the GNU Free Documentation License, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

i

Table of Contents

1 Introduction . 1

2 Specifics of Polyhedral Programs 3
2.1 Static Control Parts . 3
2.2 Additional Restrictions in PolyOpt/Fortran . 3
2.3 Allowed Control-Flow Operations . 4

2.3.1 In do initialization statement . 4
2.3.2 In do test statement . 5
2.3.3 In do increment statement . 5
2.3.4 In if conditional statement . 5
2.3.5 Examples . 6

3 Optimization Paths . 7
3.1 --polyopt-fixed-tiling . 7

3.1.1 Description . 7
3.1.2 Example . 7

3.2 --polyopt-parametric-tiling . 9
3.2.1 Description . 9
3.2.2 Example . 9

3.3 --polyopt-parallel-only . 11
3.3.1 Description . 12
3.3.2 Example . 12

4 Fine-tuning Optimizations . 13
4.1 SCoP Detection . 13
4.2 Tuning Optimizations . 13

5 Known Limitations . 15
5.1 Using a loop iterator exit value after the loop 15

6 Troubleshooting . 17

7 References . 19

Chapter 1: Introduction 1

1 Introduction

PolyOpt/Fortran is a polyhedral loop optimization framework for Fortran, integrated in the
ROSE compiler. It is based on PolyOpt, a polyhedral loop optimization framework for C,
also implemented in ROSE. (To avoid any ambiguity, the existing optimization framework
for C will be referred to as PolyOpt/C.)

PolyOpt/Fortran 0.1.0 is an extension of PolyOpt/C which adds Fortran specific ca-
pabilities. Although the Fortran functionality will eventually be merged with the main
development of PolyOpt, for now it is still in experimental stage and remains a separate
project. This documentation of PolyOpt/Fortran is based on the documentation of Poly-
Opt/C, created by Louis-Noel Pouchet. The Fortran-specific parts of the documentation
were written by Mohanish Narayan.

The main features of PolyOpt/Fortran are:

• Automatic extraction of regions that can be optimized in the polyhedral model

• Full support of PoCC (the Polyhedral Compiler Collection) analysis and optimizations

• Dependence analysis with Candl

• Program transformations for tiling and parallelism with Pluto

• Code generation with CLooG

• Parametric tiling with PTile

• Numerous under-the-hood functionalities and optimizations

Note: only a subset of Fortran is currently supported by PolyOpt/Fortran. If analysis
of C programs is needed, PolyOpt/C should be used instead. Analysis of C++ programs is
not supported.

Communication: Please contact directly Louis-Noel Pouchet pouchet@cse.ohio-state.edu or
Mohanish Narayan narayanm@cse.ohio-state.edu for any questions. PoCC is also available
as a stand-alone software on sourceforge

mailto:pouchet@cse.ohio-state.edu
mailto:narayanm@cse.ohio-state.edu
http://pocc.sourceforge.net

Chapter 2: Specifics of Polyhedral Programs 3

2 Specifics of Polyhedral Programs

2.1 Static Control Parts

Sequences of (possibly imperfectly nested) loops amenable to polyhedral optimization are
called static control parts (SCoP) [5], roughly defined as a set of consecutive statements such
that all loop bounds and conditionals are affine functions of the surrounding loop iterators
and parameters (variables whose value is unknown at compile time but invariant in the loop
nest considered). In addition, for effective data dependence analysis we require the array
access functions to also be affine functions of the surrounding iterators and parameters.

For instance, a valid affine expression for a conditional or a loop bound in a SCoP with
three loops iterators i,j,k and two parameters N,P will be of the form a.i + b.j + c.k + d.N
+ e.P + f, a,b,c,d,e,f are arbitrary (possibly 0) integer numbers.

The following program is a SCoP:

� �
do i = 1, N

do j = 1, N

A(j,i) = A(j,i) + u1(i)*v1(j)

if(N - i > 2) then

A(j,i) = A(j,i) - 2

end if

end do

end do
 	
Numerous elements can break the SCoP property, for instance:

• if conditionals involving variables that are not loop iterators or a parameters, e.g., if
(A(i,j) == 0).

• if conditionals involving loop iterators and/or a parameter to form a non-affine ex-
pression, e.g., if (i * j == 0).

• Non-affine do initialization or test condition, e.g., do j = 1, i*i.

• Non-affine array access, e.g., A(i*N,j % i) or A(B(i)).

• Use of division operator, e.g., A(j / i) or do i = x / 3, 10).

2.2 Additional Restrictions in PolyOpt/Fortran

PolyOpt/Fortran automatically extracts maximal regions that can be optimized in the
Polyhedral framework. We enforce numerous additional constraints to ensure the correct-
ness of the SCoP extraction, in particular due to dependence analysis consideration:

4 PolyOpt/Fortran - Polyhedral Optimization Framework for Fortran

• The only allowed control statements are do and if.

• There is no function call in the SCoP, unless it is a Fortran intrinsic math function
with no side-effects.

• goto, exit and cycle statements are forbidden.

• Arrays represent distinct memory locations (one per accessed array cell), and arrays
are not aliased (note: no check is performed by PolyOpt/Fortran for this property, it
is the responsibility of the user to not feed ill-formed arrays).

• Loops increment by step of one.

2.3 Allowed Control-Flow Operations

PolyOpt/Fortran supports a wide range of affine expressions, in particular conjunctions
of affine constraints can be used to bound the space. In all the following, we recall that
an affine expression must involve only surrounding loop iterators and parameters (scalar
variables that are invariant during the SCoP execution).

SCoP extraction is a syntactic process so there are clear definitions of what is allowed in
do init , test , increment and if (condition) statements. We note that if the loop it-
erator of a do statement is used outside the scope of the loop, or is assigned in the loop body,
the loop will conservatively not be considered for SCoP extraction since PolyOpt/Fortran
may change the exit value of loop iterators.

Note: do loops can be terminated with either an end do or a labelled continue state-
ment. The latter is accepted as a valid loop only if there is no reference to the label (used
in the continue statement) except in the corresponding do statement. In the output code,
the continue statement will be replaced with an end do statement.

2.3.1 In do initialization statement

init can be of the form var = expressionLb. The expressionLb is an affine expression,
or possibly a conjunction of expressions with the max(expr1, expr2) operator.

As an illustration, all loops in the following code form a valid SCoP.� �
do i = max(max(N,M),P), N + P

do 10 j = max(i-2,0), N

A(j,i) = A(j,i) - 2

10 continue

end do
 	
Some examples of incorrect loop lower bound include:

• do i = max(a,b) + max(c,d), ...: not a valid conjunction.

Chapter 2: Specifics of Polyhedral Programs 5

• do i = max(a,b) + P, ...: not a valid conjunction.

2.3.2 In do test statement

test must be of the form expressionUb. The expressionUb is an affine expression, or
possibly a conjunction of expressions with the min(expr1, expr2) operator.

As an illustration, all loops in the following code form a valid SCoP.� �
do i = 1, min(min(P,Q),R)

do j = 1, min(i,P)

A(j,i) = A(j,i) - 2

end do

end do
 	
Some examples of incorrect loop upper bound include:

• do i = 1, min(a,b) + min(c,d), ...: not a valid conjunction.

2.3.3 In do increment statement

Loops must increment by step of one.

2.3.4 In if conditional statement

For if statements, the conditional expression can be an arbitrary affine expression, or
a conjunction of affine expressions with the .AND. operator. min and max are currently
not allowed. Future releases may allow min and max provided a max constrains the lower
bound of a variable and a min constraints the upper bound of a variable. Most standard
comparison operators are allowed: <, <=, ==, >=, >. Note that else clause is not allowed,
nor is !=.

As an illustration, all loops in the following code form a valid SCoP.� �
if (i > max(M,N) .AND. j == 0)

if (k < 32 && k < min(max(i,j),P))

A(i,j) = 42;
 	
Some examples of incorrect conditional expressions include:

• if (i == 0 .OR. c == 0): disjunctions are not allowed.

6 PolyOpt/Fortran - Polyhedral Optimization Framework for Fortran

• if (i < max(A,B)): not a valid max constraint.

• if (i == 42/5): not an integer term.

2.3.5 Examples

We conclude by showing some examples of SCoPs automatically detected by Poly-
Opt/Fortran. Note that the only constraints for the statements (e.g., R,S,T in the
next example) involve the lack of unsafe function calls (functions not recognized by
PolyOpt/Fortran as side-effects free) , at most one variable is assigned in the statement,
and using affine functions to dereference arrays.� �

alpha = 43532;

beta = 12313;

do i = 1, N

R: v1(i) = (i+1)/N/4.0;

S: w(i) = 0.0;

do j = 1, N

T: A(i,j) = ((DATA_TYPE) i*j) / N;

end do

end do
 	� �
do j = 2, M

stddev(j) = 0.0;

do i = 1, N

stddev(j) = stddev(j) + (data(i,j) - mean(j)) * (data(i,j) - mean(j));

end do

stddev(j) /= float_n;

stddev(j) = sqrt(stddev(j));

if(stddev(j) .LE. eps) then

stddev(j) = 1.0D0

end if

end do
 	

Chapter 3: Optimization Paths 7

3 Optimization Paths

Three main optimization paths are available in PolyOpt/Fortran. They are geared to-
wards improving data locality for fewer data cache misses, and both coarse- and fine-grain
shared memory parallelization with OpenMP. They will be applied on all Static Control
Parts that were automatically detected in the input program. Program transformations are
generated via the PoCC polyhedral engine.

3.1 --polyopt-fixed-tiling

3.1.1 Description

This path automatically computes and applies a complex, SCoP-specific sequence of loop
transformations to enable parallel blocked (if possible) execution of the SCoP. The default
tile size is 32, and can be specified at compile time only. Parallel loops are marked with
OpenMP pragmas, inner-most vectorizable loops are marked with ivdep pragmas. Parallel
or pipeline-parallel tile execution is achieved when tiling is possible.

The Pluto module is used to compute the loop transformation sequence, in the form of
a series of affine multidimensional schedules.

Giving the flag --polyopt-fixed-tiling to PolyOpt/Fortran is equivalent to giving
the sequence:

• --polyopt-pluto-fuse-smartfuse

• --polyopt-pluto-tile

• --polyopt-pluto-parallel

• --polyopt-pluto-prevector

• --polyopt-generate-pragmas

3.1.2 Example

Given the input program:

http://pocc.sourceforge.net

8 PolyOpt/Fortran - Polyhedral Optimization Framework for Fortran

� �
do i = 1, n

do j = 1, n

C(j,i) = C(j,i) * beta

do k = 1, n

C(j,i) = C(j,i) + A(k,i) * B(j,k) * alpha

end do

end do

end do
 	
One can optionally specify a file to set the tile sizes, to override the default 32 value.

This file must be called tile.sizes, and be stored in the current working directory. It
must contain one tile size per dimension to be tiled. For example:� �
$> cat tile.sizes

16 64 1
 	
The result of --polyopt-fixed-tiling on the above example, with the specified

tile.sizes file is shown below. Note, if a tile.sizes file exists in the current working
directory it will always be used.� �

IF (n >= 1) THEN

!$omp parallel do private(c2, c6, c4)

DO c1 = 0, floor(real(n) / real(16)), 1

DO c2 = 0, floor(real(n) / real(64)), 1

DO c4 = max(1,16 * c1), min(n,16 * c1 + 15), 1

!dir$ ivdep

!dir$ vector always

!dir$ simd

DO c6 = max(1,64 * c2), min(n,64 * c2 + 63), 1

C(c6,c4) = C(c6,c4) * beta

END DO

END DO

END DO

END DO

!$omp end parallel do

!$omp parallel do private(c3, c2, c6, c4)

DO c1 = 0, floor(real(n) / real(16)), 1

DO c2 = 0, floor(real(n) / real(64)), 1

DO c3 = 1, n, 1

DO c4 = max(1,16 * c1), min(n,16 * c1 + 15), 1

!dir$ ivdep

!dir$ vector always

!dir$ simd

DO c6 = max(1,64 * c2), min(n,64 * c2 + 63), 1

C(c6,c4) = C(c6,c4) + A(c3,c4) * B(c6,c3) * alpha

END DO

END DO

END DO

END DO

END DO

!$omp end parallel do

END IF
 	

Chapter 3: Optimization Paths 9

3.2 --polyopt-parametric-tiling

3.2.1 Description

NOTE: The parametric tiling path is still experimental, and correctness of the generated
code is not guaranteed in all cases. In particular, a known issue is when parametric tiling is
applied on a loop nest where the outer loop is sequential (wavefront creation is required) and
the inner loops are permutable but not fusable. We are working hard to fix this remaining
problem.

To the best of our knowledge, the generated code is correct when all statements in a
(possibly imperfectly nested) loop nest can be maximally fused. Remember that polyhedral
transformations are automatically computed before the parametric tiling pass to enforce
this property on the code when possible. The above issue impacts only program parts
where it is not possible to exhibit a polyhedral transformation making either the outer loop
parallel, or all loops fusable in the loop nest. This is not a frequent pattern, for instance
none of the 28 benchmarks of the PolyBench 2.0 test suite exhibit this issue.

This path automatically computes and applies a complex, SCoP-specific sequence of loop
transformations to enable parallel blocked execution of the SCoP. The generated code is
parametrically tiled when possible, and the tile sizes can be specified at runtime via the
param_tile_sizes[] array. By default, the tile sizes are set to 32. Parallel loops are
marked with OpenMP pragmas.

The Pluto module is used to compute a loop transformation sequence that makes tiling
legal, when possible, and the PTile module performs parametric tiling. Parallel or pipeline-
parallel tile execution is achieved if tiling is possible.

Giving the flag --polyopt-parametric-tiling to PolyOpt/Fortran is equivalent to
giving the sequence:

• --polyopt-pluto-fuse-smartfuse

• --polyopt-pluto-parallel

• --polyopt-codegen-use-ptile

• --polyopt-codegen-insert-ptile-api

3.2.2 Example

The Parametric tiling API requires to use the function ParamTileSizeVectorInit(int*,

int, int) to fill-in the tile sizes. This function takes an array of integers, the number of

10 PolyOpt/Fortran - Polyhedral Optimization Framework for Fortran

tile size parameters, and a unique identifier for the SCoP. This function can be in another
compilation unit. It allows to select the tile size at run-time, before the computation starts.
A trivial definition of the function can be the following:� �

subroutine ParamTileSizeVectorInit

& (param_tile_sizes, nestedLoops, scopId)

integer nestedLoops, scopId, i

integer , dimension(50) :: param_tile_sizes

do i = 1 , nestedLoops

param_tile_sizes(i) = 32

end do

end
 	

Note: Parametric tiling without using the Parametric tiling API can be achieved by not
providing the --polyopt-codegen-insert-ptile-api option, in which case the tile sizes
will be initialized to a fixed value.

The result of --polyopt-parametric-tiling on the above dgemm example is shown
below.

Chapter 3: Optimization Paths 11

� �
INTEGER :: tmpLb

INTEGER :: tmpUb

INTEGER :: c2t1

REAL :: T1c1

REAL :: T1c2

INTEGER :: c3t1

REAL :: T1c3

INTEGER :: c1t1

INTEGER :: c3

INTEGER :: c1

INTEGER :: c2

INTEGER :: param_tile_sizes(50)

CALL ParamTileSizeVectorInit(param_tile_sizes,3,1)

T1c1 = param_tile_sizes(3)

T1c2 = param_tile_sizes(2)

T1c3 = param_tile_sizes(1)

IF (n >= 1) THEN

tmpLb = NINT(real(-1 + 1 / T1c1 * 2))

tmpUb = NINT(real(n * (1 / T1c1)))

!$omp parallel do private(c2t1, c1, c2)

DO c1t1 = tmpLb, tmpUb, 1

DO c2t1 = NINT(real(-1 + 1 / T1c2 * 2)), NINT(real(n * (1 / T1c2))), 1

DO c1 = max(real(c1t1 * T1c1),real(1.00000)),

* min(real(c1t1 * T1c1 + (T1c1 + -1)),real(n)), 1

DO c2 = max(real(c2t1 * T1c2),real(1.00000)),

* min(real(c2t1 * T1c2 + (T1c2 + -1)),real(n)), 1

C(c2,c1) = C(c2,c1) * beta

END DO

END DO

END DO

END DO

tmpLb = NINT(real(-1 + 1 / T1c1 * 2))

tmpUb = NINT(real(n * (1 / T1c1)))

!$omp parallel do private(c2t1, c3t1, c1, c2, c3)

DO c1t1 = tmpLb, tmpUb, 1

DO c2t1 = NINT(real(-1 + 1 / T1c2 * 2)), NINT(real(n * (1 / T1c2))), 1

DO c3t1 = NINT(real(-1 + 1 / T1c3 * 2)), NINT(real(n * (1 / T1c3))), 1

DO c1 = max(real(c1t1 * T1c1),real(1.00000)),

* min(real(c1t1 * T1c1 + (T1c1 + -1)),real(n)), 1

DO c2 = max(real(c2t1 * T1c2),real(1.00000)),

* min(real(c2t1 * T1c2 + (T1c2 + -1)),real(n)), 1

DO c3 = max(real(c3t1 * T1c3),real(1.00000)),

* min(real(c3t1 * T1c3 + (T1c3 + -1)),real(n)), 1

C(c2,c1) = C(c2,c1) + A(c3,c1) * B(c2,c3) * alpha

END DO

END DO

END DO

END DO

END DO

END DO

END IF
 	

3.3 --polyopt-parallel-only

12 PolyOpt/Fortran - Polyhedral Optimization Framework for Fortran

3.3.1 Description

This path automatically computes and applies a complex, SCoP-specific sequence of loop
transformations to enable parallel execution of the SCoP while improving data locality.
In contrast to the other paths, no tiling is applied on the generated program. Parallel
loops are marked with OpenMP pragmas. The Pluto module is used to compute a loop
transformation sequence that expose coarse-grain parallelism when possible.

Giving the flag --polyopt-parallel-only to PolyOpt/Fortran is equivalent to giving
the sequence:

• --polyopt-pluto-fuse-smartfuse

• --polyopt-pluto-parallel

• --polyopt-generate-pragmas

3.3.2 Example

The result of --polyopt-parallel-only on the above dgemm example is shown below.
Note that pre-vectorization is disabled in this mode, fixed tiling must be enabled for it
to be active. To prevent the distribution of the two statements, the user can rely on the
fine-tuning flags, e.g., --polyopt-pluto-fuse-maxfuse.� �

IF (n >= 1) THEN

!$omp parallel do private(c2)

DO c1 = 1, n, 1

DO c2 = 1, n, 1

C(c2,c1) = C(c2,c1) * beta

END DO

END DO

!$omp end parallel do

!$omp parallel do private(c3, c2)

DO c1 = 1, n, 1

DO c2 = 1, n, 1

DO c3 = 1, n, 1

C(c2,c1) = C(c2,c1) + A(c3,c1) * B(c2,c3) * alpha

END DO

END DO

END DO

!$omp end parallel do

END IF

END PROGRAM
 	

Chapter 4: Fine-tuning Optimizations 13

4 Fine-tuning Optimizations

PolyOpt/Fortran offers numerous tuning possibilities, use --polyopt-help for a compre-
hensive list. We distinguish two main categories of options that impact how the program
will be transformed: (1) options that control how SCoP are extracted; and (2) options that
control how each individual SCoP is transformed.

4.1 SCoP Detection

The following options are available to control how SCoP extraction is being performed,
and in particular how non-compliant features are handled.

• --polyopt-safe-math-func: This flag is not used in PolyOpt/Fortran. Fortran
intrinsic functions (not intrinsic subroutines) are allowed in SCoPs as long as
they do not have side effects. Currently this is determined using the function
matchAgainstIntrinsicFunctionList in the Rose library. Also these functions
cannot occur in if conditions, do loop bounds or array access functions.

• --polyopt-approximate-scop-extractor: Over-approximate non-affine array
accesses to scalars (all array cells are approximated to be read/written for each array
reference).

• --polyopt-scop-extractor-verbose=1: Verbosity option. Reports which functions
have been analyzed.

• --polyopt-scop-extractor-verbose=2: Verbosity option. Reports which SCoPs
have been detected.

• --polyopt-scop-extractor-verbose=3: Verbosity option. Reports which SCoPs
have been detected.

• --polyopt-scop-extractor-verbose=4: Verbosity option. Reports which SCoPs
have been detected, print their polyhedral representation, print all nodes that broke
the SCoP.

4.2 Tuning Optimizations

The following options are available to control PoCC, the polyhedral engine. In particular,
those control the Pluto module that is responsible for computing the loop transformation
to be applied to the SCoP.

• --polyopt-pocc-verbose:

• --polyopt-pluto: Activate the Pluto module.

• --polyopt-pluto-tile: Activate polyhedral tiling.

• --polyopt-pluto-parallel: Activate coarse-grain parallelization.

14 PolyOpt/Fortran - Polyhedral Optimization Framework for Fortran

• --polyopt-pluto-prevector: Activate fine-grain parallelization.

• --polyopt-pluto-fuse-<maxfuse,smartfuse,nofuse>: Control which fusion heuris-
tic to use (default is smartfuse).

Chapter 5: Known Limitations 15

5 Known Limitations

Following are few known issues with PolyOpt/Fortran.

5.1 Using a loop iterator exit value after the loop

If the value of a loop iterator is being read outside the loop, after a construct which
breakes the SCoP, then PolyOpt/Fortran may not work correctly. e.g in the following code
the value of iterator i is being read after the subroutine call (which is a SCoP breaking
construct).

� �
do i = 1, 10

a(i) = i

end do

call some_function()

do j = 1, i

a(j) = j

end do
 	
We are currently working on fixing our implementation for this case.

Chapter 6: Troubleshooting 17

6 Troubleshooting

In PolyOpt/Fortran, polyhedral programs are a constrained subset of Fortran programs and
it can be difficult at start to understand why a program is not detected as a SCoP. Try us-
ing the --polyopt-scop-extractor-verbose=4 option, and reading the papers referenced
below.

For any other problems, please contact directly Louis-Noel Pouchet
pouchet@cse.ohio-state.edu or Mohanish Narayan narayanm@cse.ohio-state.edu.

mailto:pouchet@cse.ohio-state.edu
mailto:narayanm@cse.ohio-state.edu

Chapter 7: References 19

7 References

[1] M. Baskaran, A. Hartono, S. Tavarageri, T. Henretty, J. Ramanujam, and P.
Sadayappan. Parameterized Tiling Revisited. In International Symposium on
Code Generation and Optimization (CGO’10), Apr 2010.

[2] Cédric Bastoul. Code Generation in the Polyhedral Model Is Easier Than
You Think. In IEEE International Conference on Parallel Architecture and
Compilation Techniques (PACT’04), Sept 2004.

[3] Uday Bondhugula and Albert Hartono and J. Ramanujam and P. Sadayappan.
A Practical Automatic Polyhedral Program Optimization System. In ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’08), Jun 2008.

[4] Paul Feautrier. Dataflow Analysis of Array and Scalar References. In Intl.
Journal of Parallel Programming, 20(1):23–53, 1991.

[5] Paul Feautrier. Some efficient solutions to the affine scheduling problem. Part
II, Multidimensional time. In Intl. Journal of Parallel Programming, 21(5):389–
420, 1992.

[6] Louis-Noel Pouchet, Uday Bondhugula, Cdric Bastoul, Albert Cohen, J. Ra-
manujam, P. Sadayappan and Nicolas Vasilache. Loop Transformations: Con-
vexity, Pruning and Optimization. In ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL’11), Jan 2011.

	Introduction
	Specifics of Polyhedral Programs
	Static Control Parts
	Additional Restrictions in PolyOpt/Fortran
	Allowed Control-Flow Operations
	In do initialization statement
	In do test statement
	In do increment statement
	In if conditional statement
	Examples

	Optimization Paths
	--polyopt-fixed-tiling
	Description
	Example

	--polyopt-parametric-tiling
	Description
	Example

	--polyopt-parallel-only
	Description
	Example

	Fine-tuning Optimizations
	SCoP Detection
	Tuning Optimizations

	Known Limitations
	Using a loop iterator exit value after the loop

	Troubleshooting
	References

