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Abstract—Parallelization and locality optimization of affine
loop nests has been successfully addressed for shared-memory
machines. However, many large-scale simulation applications
must be executed in a distributed-memory environment, and use
irregular/sparse computations where the control-flow and array-
access patterns are data-dependent.

In this paper, we propose an approach for effective parallel exe-
cution of a class of irregular loop computations in a distributed-
memory environment, using a combination of static and run-
time analysis. We discuss algorithms that analyze sequential
code to generate an inspector and an executor. The inspector
captures the data-dependent behavior of the computation in
parallel and without requiring complete replication of any of the
data structures used in the original computation. The inspector
also partitions the iterations and data structures among the pro-
cesses, while minimizing the communication volume required for
satisfying dependences. The executor performs the computation
in parallel. The executor code generated preserves contiguity of
data accesses, which is important to enable optimizations like
prefetching. The effectiveness of the framework is demonstrated
on several benchmarks and a climate modeling application.

I. INTRODUCTION

Automatic parallelization and locality optimization of affine
loop nests have been addressed for shared-memory multi-
processors and GPUs with good success [4], [7], [8], [16],
[29], [30]. However, many large-scale simulation applications
must be executed in a distributed-memory environment, using
irregular or sparse computations where the control-flow and
array-access patterns are data-dependent. A common form of
sparsity and unstructured data in scientific codes is via indirect
array accesses, where elements of one array are used as indices
to access elements of another array. Further, multiple levels of
indirection may be used for array accesses. Virtually all prior
work on polyhedral compiler transformations is inapplicable
in such cases.

We propose a framework for automatic parallelization and
distributed-memory code generation for an extended class
of affine computations that allow some forms of indirect
array accesses. The class we address is prevalent in many
scientific/engineering domains and the paradigm for its par-
allelization is often called the inspector/executor (I/E) [38]
approach. The I/E approach uses (1) a so-called inspector code
that examines some data that is unavailable at compile time
but is available at the very beginning of execution (e.g., the
specific inter-connectivity of the unstructured grid representing
an airplane wing’s discretized representation) to construct
distributed data structures and computation partitions, and (2)

an executor code that uses data structures generated by the
inspector to execute the desired computation using parallelism.

The I/E approach has been well known in the high-
performance computing community, since the pioneering work
of Saltz and coworkers [38] in the late eighties. The approach
is routinely used by application developers for manual im-
plementation of message-passing codes for unstructured grid
applications. However, only a very small number of compiler
efforts (that we detail in Sec. VII) have been directed at gener-
ation of parallel code using the approach. In this paper, using
the I/E paradigm, we develop an automatic parallelization
and code generation infrastructure for an extended class of
affine loops, targeting a distributed-memory message passing
parallel programming model. This paper makes the following
contributions:
• It presents a transformation system for effective automatic

parallelization and distributed-memory code generation
for an extended class of affine programs;

• It develops an efficient approach for generating parallel
code with a lower degree of indirect array access than
any previously proposed algorithms for the class of
computations handled; and

• It presents experimental results on the use of the ap-
proach to develop a complex parallel application, with
performance approaching that of manual parallelization
implemented by expert application developers.

The rest of the paper is organized as follows. Section II
describes the class of extended affine computations that we ad-
dress, along with a high-level overview of the approach to code
transformation. Section III provides details of the approach
to generate computation partitions using a hypergraph that
models the affinity of loop iterations to data elements accessed.
The algorithms for generation of inspector and executor code
are provided in Section IV. Section V elaborates on how the
need for inspector code can be optimized away for portions
of the input code that are strictly affine. Experimental results
using four kernels and one significant application are presented
in Section VI. Related work is discussed in Section VII and
conclusions stated in Section VIII.

II. OVERVIEW

This section outlines the methodology for automatic par-
allelization of the addressed class of applications. Listing 1
shows two loops from a conjugate-gradient iterative sparse
linear systems solver, an example of the class of computations
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1 while( !converged ){
2 /* Other computation; not shown */
3 for( k = 0 ; k < n ; k++ )
4 x[k] = ...
5 /* Other computation; not shown */
6 for( i = 0 ; i < n ; i++ )
7 for( j = ia[i] ; j < ia[i+1] ; j++ ){
8 xindex = col[j];
9 y[i] += A[j]*x[xindex];

10 }
11 /*Other computation; not shown */
12 }

Listing 1. Sequential conjugate gradient computation.

Fig. 1. Control flow and data-access patterns of iteration 2, 4, and 5, of
loops i and k mapped to process 0.

targeted by our approach. Loop k computes the values of x.
In loop i, vector y is computed by multiplying matrix A and
vector x. Here A uses the Compressed Sparse Row (CSR)
format, a standard representation for sparse matrices. For a
sparse matrix with n rows, array ia is of size n+1 and its
entries point to the beginning of a consecutive set of locations
in A that store the non-zero elements in row i. For i in [0,n-1],
these non-zero elements are in A[ia[i]], ..., A[ia[i+1]-1].
Array col has the same size as A, and for every element in
A, col stores its column number in the matrix.

Figure 1 shows sample values for all arrays in the com-
putation. The bounds of loop j depend on values in ia, and
the elements of x accessed for any i depend on values in
col. Such arrays that affect the control-flow and array-access
patterns are referred to as indirection arrays. All other arrays
will be referred to as data arrays (x, y, and A).

The goal is to parallelize the computation by partitioning the
iterations of loops i and k among a set of given processes.
Suppose that iterations 2, 4, and 5 (shown in dark gray) are
chosen to be executed on process 0, and the remaining ones
(shown in light gray) on process 1. As discussed below, the
choice of this partitioning is done at run time with the help of
a hypergraph partitioner. Figure 2 illustrates the details of this
partitioned execution; these details will be elaborated shortly.

We present a source-to-source transformation scheme that
(1) generates code to analyze the computation at run time for
partitioning the iterations, as well as data, among processes,
(2) generates local data structures needed to execute the
partitioned iterations in a manner consistent with the original
computation, and (3) executes the partitions on multiple pro-
cesses. The code that performs the first two steps is commonly
referred to as an inspector, with the final step performed by an

Fig. 2. Transformed iteration and data view.

executor. Listing 2 shows the latter for the running example.
Targeted computations. We target a class of computations that
are more general than affine computations. In affine codes, the
loop bounds, conditionals of ifs, and array-access expressions
are affine functions of loop iterators and program parameters.
For such codes, the control-flow and data-access patterns can
be fully characterized at compile time.

Consider loop i in Listing 1. The bounds of loop j depend
on ia, and accesses to x depend on col. During analysis of
loop i, affine techniques have to be conservative and over-
approximate the data dependences and control flow. We target
a generalized class of computations, in which loop bounds, if
conditionals, and array-access expressions are affine functions
of iterators, parameters, and values stored in indirection arrays.
Further, values in these indirection arrays may themselves be
accessed through other indirection arrays.

Within this extended class, we target loops that are parallel,
except for loop-carried dependences due to reductions of
scalars or array elements using operators which are associative
and commutative. For any scalar or array element participating
in such reductions, its value should not be used for any other
computation within the loop body. Values of indirection arrays
must not be modified within the loop. Loops that satisfy these
properties will be referred to as partitionable loops. Loops i

and k in Listing 1 are partitionable. For code transformations,
only partitionable loops not nested within each other are
considered. A formal definition of partitionable loops can be
found in [34].

The proposed framework is well suited for computations
that have a sequence of partitionable loops enclosed within
an outer sequential loop (usually a time-step loop or a con-
vergence loop), such that the control-flow and array-access
patterns are not modified within the sequential loop. Such
computations are common in many scientific and engineering
domains. Furthermore, with this code structure, the inspector
can be hoisted out of the outer loop.
Partitioning the iterations. In Listing 1, there exists a
producer-consumer relationship between the two loops due to



1 /* Inspector code to generate o_a_j, i_x_j, lb,*/
2 /* ub, xl, yl, Al and to compute nl; not shown */
3 while( !converged ){
4 /* Other computation; not shown */
5 /* Update ghosts */
6 body_k = 0;
7 for( kl = 0 ; kl < nl ; kl++ ){
8 xl[kl] = ...; body_k++; }
9 /* Update owners */

10 /* Other computation; not shown */
11 /* Update ghosts */
12 body_i = 0; loop_j = 0 ; body_j = 0;
13 for( il = 0 ; il < nl ; il++ ) {
14 offset_a_j = o_a_j[loop_j];
15 for( j = lb[loop_j] ; j < ub[loop_j] ; j++ ){
16 yl[il] += Al[j+offset_a_j]*xl[i_x_j[body_j]];
17 body_j++; }
18 loop_j++; body_i++; }
19 /* Update owners */
20 }

Listing 2. Parallel conjugate gradient computation.

array x. In a parallel execution of both loops, communication
would be required to satisfy this dependence. The volume of
communication depends on the partitioning of the iterations.
The process of computing these partitions (Section III) may
result in the iterations mapped to each process not being
contiguous. They will be renumbered to be a contiguous
sequence starting from 0. For example, iterations 2, 4, and
5 of loop i, when assigned to process 0, are renumbered 0–2
(shown as the values of local iterator il in Figure 2).
Bounds of inner loops. The control-flow in the parallel
execution needs to be consistent with the original computation.
As discussed earlier, the loop bounds of inner loops depend
on values stored in read-only indirection arrays, loop iterators,
or fixed-value parameters. Therefore, these bounds can be
precomputed by an inspector and stored in arrays in the local
data space of each process. The sizes of these arrays would be
the number of times an inner loop is invoked on that process.
For example, in Figure 1, for iterations mapped to process
0, inner loop j is invoked once in every iteration of loop i.
Two arrays of size 3 would be needed to store the bounds of
the loop on process 0 (shown as lb and ub in Figure 2).
Conditionals of ifs are handled similarly, by storing their
values in local arrays.
Partitioning the data. Once the iterations have been parti-
tioned, the data is partitioned such that each process has local
arrays to store all the data needed to execute its iterations
without any communication within the loop. In Figure 2, yl,
Al, and xl are the local arrays on process 0 for y, A, and x.

The same array element may be accessed by multiple
iterations of the partitionable loop, which might be executed
on different processes. Consider Figure 1, where x[1] and
x[2] are accessed by both processes and are replicated on
both, as shown in Figure 2. One of the processes is chosen as
the owner of the data, and the location of the data on other
processes is treated as a ghost location. For example, x[2] is
owned by process 0, but process 1 has a ghost location for it.
The ghost locations and owned locations together constitute
the local copy of a data array on a process.

Ghost elements for arrays that are only read within the
partitionable loop are set to the value at the owner before the

start of the loop. Ghost locations for arrays whose values are
updated within the loop are initialized to the identity element
of the update operator (0 for “+=”, 1 for “*=”). After the
loop, these elements are communicated to the owner where
the values from all ghost locations are combined. Therefore,
the computation model is not strictly owner-computes. Since
all update operations are associative and commutative, all
iterations of the loop in the transformed version can be
executed without any communication.
Data accesses in the transformed code. The data-access
patterns of the original computation need to be replicated in
the transformed version. Consider expression col[j] used to
access x in Listing 1. Since xl is the local copy of x on
each process, all elements of x accessed by a process are
represented in xl. To access the correct elements in xl, array
col could be replicated on each process, and a map could be
used to find the location that represents the element col[j]
of x. Such an approach would need a map lookup for every
memory access and would be prohibitively expensive.

Similar to loop bounds, array-access expressions depend
only on values stored in read-only indirection arrays, loop iter-
ators, and constant parameters. Values of these expressions can
be inspected and stored in arrays allocated in the local memory
of each process. Further, the values stored are modified to point
to corresponding locations in the local data arrays. The size
of the array would be the number of times the expression is
evaluated on a particular process. For example, the value of
col[j] in Listing 1 is evaluated for every iteration of loop
j. From Figure 1, for iterations of i mapped to process 0, the
total number of iterations of loop j executed is 2 + 3 + 2 = 7.
Therefore an array i_x_j of size 7 on process 0 is used to
“simulate” the accesses to x due to expression col[j].
Optimizing accesses from inner loops. The procedure de-
scribed earlier would result in another array (of the same
size as i_x_j) to represent the access A[j]. To reduce
the memory footprint, we recognize that access expression
j results in contiguous accesses to elements of A, for every
execution of loop j. If the local array is such that elements that
were accessed contiguously in the original data space remain
contiguous in the local data space of each process, it would
be enough to store (in an additional array) the translated value
of the access expression for only the first iteration of the loop.
The rest of the accesses could be derived by adding to this
value the value of the iterator, subtracted by the lower bound.
The size of the array to hold these values is the number of
times the loop is invoked. For example, for A[j], an array
o_a_j of size 3 is used on process 0 to store the accesses
from the first iterations of the 3 invocations of loop j.

This optimization is applicable to all array-access expres-
sions that are unit-stride with respect to a surrounding loop
that is not a partitionable loop. Accesses from iterations of
a partitionable loop mapped to a process are not necessarily
contiguous with respect to the original computation.
Optimizing accesses from the partitionable loop. For cases
where elements of an array were accessed at unit-stride with
respect to the partitionable loop in the original computation,



it is desirable to maintain unit-stride in the transformed code
as well. This can be achieved by placing contiguously in local
memory all elements of the array accessed by the successive
iterations on a process. For example, if iterations 2, 4, and 5
of loop k are mapped to process 0, elements of array xl can
be accessed by using iterator kl if xl[0-2] correspond to
x[2], x[4], and x[5]. The same could be done for y[i] in
Listing 1 since there are no other accesses to it.

If the same array is accessed by an expression that is unit-
stride with respect to an inner loop (as described earlier), the
ordering of elements required to maintain the unit-stride in the
transformed code may conflict with the ordering necessary
to maintain unit-stride with respect to a partitionable loop.
In such cases, the accesses from the partitionable loop are
not optimized. If multiple partitionable loops access an array
with unit-stride, to optimize all the accesses the loops must
be partitioned in a similar way in order to obtain a consistent
ordering of the array elements (Section IV-A).
Executor code. To execute the original computation on each
process, code is transformed such that the modified code
accesses local arrays for all data arrays, and uses values stored
in local arrays for loop bounds, conditionals, and array-access
expressions. Listing 2 shows the modified code obtained from
Listing 1. Loop bounds of partitionable loops are based on the
number of iterations nl that are mapped to a process. The loop
bounds of loop j are read from arrays lb and ub. Accesses
to local arrays xl and Al are determined by values in arrays
i_x_j and o_a_j. Also, communication calls are inserted to
satisfy the producer-consumer relationship due to array x.

III. PARTITIONING THE COMPUTATION

The computation is partitioned by considering the iteration-
data affinity. To model this affinity, we use a hypergraph
H = (V,N ) where V is the set of vertices and N is the set of
nets [43]. Iterations of all partitionable loops are represented
by separate vertices i ∈ V . Each accessed element of a data
array is represented by a net j ∈ N , whose pins are the itera-
tions that access the data element. The hypergraph is subjected
to a multi-constraint partitioning to (1) partition the iteration of
each of the partitionable loop in a load-balanced manner, and
(2) minimize communication required for producer-consumer
relationships between partitionable loops.
Achieving load balancing. Each vertex is associated with
a vector of weights ~wi of size equal to the number of
partitionable loops. A vertex that represents an iteration of
partitionable loop k has the k-th element as 1, with all other
elements being 0. The weight of a set of vertices P is defined
as WP =

∑
i∈P ~wi. If Pn (where n ∈ [0, N)) are the

partitions generated, load balance for every partitionable loop
is achieved by applying the constraint Pn ≤ Pavg(1+ε), where
Pavg = PV/N ; ε is the maximum load imbalance tolerated.
Minimizing communication. Each net in N is also associated
with a weight cj , whose value is the same as the size of the
data represented by the net. For each partition Pn, the set
of nets that have pins in it can be divided into two disjoint
subsets. Nets that have pins only in Pn are internal nets, In

and nets with pins in other partitions are external nets, En.
Each external net represents a data element that is accessed by
more than one process. One of the partitions is the owner of
the data, and the other partitions have corresponding ghosts.
To minimize communication, the number of ghost cells needs
to be minimized, along with the number of partitions λj that
have a ghost for the data element represented by j ∈ N .
This is achieved by minimizing the cut-size Πn for each
partition defined as Πn =

∑
j∈En

cj(λj − 1). The hypergraph
is subjected to a min-cut partitioning, under the load-balance
constraints specified above [9].

IV. INSPECTOR: FUNCTIONALITY AND CODE GENERATION

This section describes the run-time inspector analysis re-
quired to create the iteration partitions (along with the required
data) for each process. The process has three phases.
• Phase I: Build and partition the hypergraph by analyzing

the data elements touched by the iterations of all parti-
tionable loops; allocate local copies for all data arrays
based on the iterations assigned to each process.

• Phase II: Compute the sizes of the arrays needed to
replicate the control-flow and array-access patterns.

• Phase III: Populate these arrays with appropriate values.

A. Phase I: Hypergraph Generation

Run-time functionality. The inspector analyzes the compu-
tation and generates the corresponding hypergraph. For List-
ing 1, a portion of the inspector that generates the hypergraph
is shown in Listing 3. The inspector code contains only
statements from the original computation that affect the control
flow and array accesses.

The inspector (for the sake of analysis) starts with the
assumption that all arrays are block-partitioned across the
processes. Each process analyzes a block-partitioned subset of
the original iteration (represented by [kstart,kend) for loop
k and [istart,iend) for loop i) and therefore computes
only a part of the hypergraph. For each iteration of the
partitionable loop executed on a process, a vertex is added
to represent it in the hypergraph, by calling AddVertex. For
every data array element that is accessed by this iteration, the
vertex is added as a pin to the corresponding net. For example,
AddPin(id_y,i,vi,1) adds vertex vi as a pin to the net
for the i-th element of array y (id_y is a unique id for y).
The last argument specifies that the element is accessed by an
expression with a unit stride.

Since arrays are block-partitioned, it might not be possi-
ble to evaluate each array-access expression since values in
indirection arrays might not be local to the process. Thus,
every access to an indirection array is guarded by the function
is_known which returns true if the value needed is known
on the current process and false otherwise, with the element
flagged as being requested. After the block of iterations have
been analyzed, all outstanding requests are serviced. On re-
analyzing these iterations, is_known for those elements would
evaluate to true, and the value can be obtained via function
get_elem. Repeated analysis is performed until is_known



1 do{ for( k = kstart ; k < kend ; k++ ){
2 AddVertex(id_k,vk);
3 AddPin(id_x,k,vk,1); ...}
4 for( i = istart ; i < iend ; i++ ){
5 AddVertex(id_i,vi);
6 if(is_known(id_ia,i) && is_known(id_ia,i+1))
7 for( j = get_elem(id_ia,i) ;
8 j < get_elem(id_ia,i+1) ; j++ ){
9 AddPin(id_y,i,vi,1); AddPin(id_A,j,vi,1);

10 if( is_known(id_col,j) )
11 xindex = get_elem(id_col,j);
12 if( is_known(id_xindex) )
13 AddPin(id_x,xindex,vi,0); }
14 }while( DoneGraphGen() );

Listing 3. Phase I of the inspector.

returns true for all accessed elements. In this phase, there is
no communication due to the values of the data array elements,
since these values are not used to index other arrays. Multiple
levels of indirection are handled through successive execution
of the outer blocked-partitioned loop, as shown in Listing 3.

The portions of the hypergraph built by each process are
combined to compute the complete iteration-to-data affinity.
The hypergraph is partitioned P ways as described in Sec-
tion III where P is the number of processes. Each process is
assigned a unique partition representing the iterations to be
executed on it. The iterations are renumbered such that they
form a contiguous set on each process, while maintaining the
relative ordering of the iterations mapped to that process.
Code generation at compile time. The inspector code that
achieves the functionality described above (e.g., the code
in Listing 3) is generated automatically by the compiler.
To analyze the control-flow and array-access patterns of the
original computations, all loops and conditional statements
are included in the inspector code with certain modifications,
as discussed below. Since scalars might be involved in loop
bounds, conditionals, and index expressions of arrays, all
assignments to such scalars are also included. For example,
xindex in Listing 1 is used to access array x. Therefore,
statement xindex=col[j] has to be executed by the inspector
to capture the elements of x accessed. Scalars that are used
(directly or transitively) to determine control flow or array-
access expressions inside a partitionable loop (referred to as
inspected scalars) are handled in this manner.

To ensure that values not yet known on a process are not
used, for all array elements and inspected scalars, boolean state
variables are maintained. Loops/branches are executed only if
all data accessed in the bounds/conditionals are known on a
process, as illustrated by the calls to is_known. Similarly,
inspected scalars are assigned values only if all elements on
the right-hand side are known.

To support the optimizations of accesses from partitionable
loops as discussed in Section II, it might be necessary to ensure
that multiple partitionable loops are partitioned the same way.
To enforce this, the loop bounds of all such partitionable loops
are checked at compile time. If they are the same, AddVertex
would map corresponding iterations of all these loops to the
same vertex. In cases where the loop bounds are not the same,
the accesses to data arrays are not optimized.

B. Initializing Local Arrays

After partitioning the hypergraph, Phase I of the inspector
partitions the data. For a net that has all its pins in the same
partition, the corresponding data element is assigned to the
same process. If a net has pins in different partitions, the
element is assigned to the process that executes the majority
of the iterations that access this data. All other processes have
a ghost location for that element. The local copy of the array
consists of the elements that a process owns and the ghosts
locations for elements owned by other processes. This is done
for all data arrays in the computation. For example, arrays yl,
xl and Al of Listing 2 are allocated at this time.

A compile-time analysis determines expressions that result
in unit-stride accesses to a data array due to a surrounding
loop, with the conflict between accesses from a partitioned
loop and from an inner loop resolved statically. Elements
accessed by such expressions (known at run time using the
last argument of AddPin) are laid out first in increasing order
of their original position, followed by all other elements of
the array accessed. This scheme maintains the contiguity of
accesses within inner loops in the transformed code and within
partitionable loops when they do not conflict with the former.

C. Phase II: Computing the Sizes of Local Access Arrays

Run-time functionality. The next step is to determine the
sizes of arrays used to (1) store loop bounds of inner loops,
(2) store the result of conditionals, and (3) store the indices
of accessed data array elements. The size of these arrays
depends on the expressions they represent. Every array-access
expression is analyzed at compile time to determine if the
access is unit-stride with respect to a surrounding loop. For
such an expression, the size of the array needed would be
the same as the number of invocations of the corresponding
loop. For expressions that are not unit-stride with respect to
any surrounding loop, loop-invariant analysis is performed to
determine the innermost loop with respect to which the value
of the expression changes. In the worst case, this might be the
immediately surrounding loop. The size of the array needed
to represent these expressions is the total number of iterations
of this loop across all iterations of the partitioned loop.

The sizes of arrays that store the bounds of an inner loop
are the same as the number of invocations of the loop. For an
array needed to store the values of a conditional, the number
of times the if statement is executed should be counted.
Listing 4 shows the code for this phase of the inspector for
the running example. The number of invocations of inner loop
j is tracked via counter loop_j. Counters body_* track the
total number of times a loop body is executed. In addition,
this phase ensures that a process has all values of indirection
arrays needed to analyze the iterations mapped to it.

Each process executes only the iterations mapped to it after
partitioning, which may be different from those analyzed by
this process when building the hypergraph. As in Section IV-A,
all inner loops, conditionals, and statements are guarded to
check if the values of inspected scalars and indirection array
elements have been determined. Again, this phase is completed



1 do{
2 body_i = 0 ; loop_j = 0 ; body_j = 0; body_k = 0;
3 for( k = 0 ; k < n ; k++ )
4 if( home(id_k,k) == myid )
5 body_k++;
6 for( i = 0 ; i < n ; i++ )
7 if( home(id_i,i) == myid ){
8 if( is_known(id_ia,i) && is_known(id_ia,i+1)){
9 for( j = get_elem(id_ia,i) ;

10 j < get_elem(id_ia,i+1) ; j++ ){
11 if( is_known(id_col,j) )
12 xindex = get_elem(id_col,j);
13 body_j++; }
14 loop_j++; }
15 body_i++; }
16 }while( DoneCounters() );

Listing 4. Phase II of the inspector.
1 body_i = 0 ; loop_j = 0 ; body_j = 0; body_k = 0;
2 for( k = 0 ; k < n ; k++ )
3 if( home(id_k,k) == myid )
4 body_k++;
5 for( i = 0 ; i < n ; i++ )
6 if( home(id_i,i) == myid ){
7 lb_j[loop_j] = get_elem(id_ia,i);
8 ub_j[loop_j] = get_elem(id_ia,i+1);
9 for( j = lb_j[loop_j] ; j < ub_j[loop_j] ; j++){

10 xindex = get_elem(id_col,j);
11 if( j == lb_j[loop_j] )
12 o_a_j[loop_j] = j;
13 i_x_j[body_j] = xindex; body_j++; }
14 loop_j++;
15 body_i++; }

Listing 5. Phase III of the inspector.

only after all levels of indirections have been resolved.
Code generation at compile time. The code generation for
this phase is similar to Phase I. Only statements that affect
the control-flow and array-access patterns are considered. The
differences from Phase I are (1) the bounds of the partitionable
loop are same as the original computation and its body is
enclosed in an if statement that checks if the iteration is
to be executed on the current process, and (2) statements to
increment counters loop_* and body_* are introduced.

D. Phase III: Initializing Local Access Arrays

Run-time functionality. After allocation, the access arrays
are initially populated with the sequence of values the corre-
sponding expression evaluates to in the original computation.
Listing 5 shows the code to do so, for the example in Listing 1.

For expressions that are unit-stride with respect to a sur-
rounding inner loop, the element accessed by the first iteration
of every invocation of the loop is stored in the array that
represents the index expression. For all other expressions, the
values for all iterations are stored in arrays. The value of the
loop bounds of all inner loops and results of conditionals are
also stored in arrays in this phase of the inspector.
Code generation at compile time. To generate the code for
this phase, once again the partitionable loop is replicated as is,
with the loop body enclosed within an if statement to analyze
only the iterations mapped to the current process. The body
of this new loop is generated by traversing the statements of
the original partitionable loops, as shown in Algorithm 1.
Assignment Statements: On encountering such statements in
the original AST, a corresponding statement is added to the
AST of this phase of the inspector by Algorithm 1. State-

Algorithm 1: CodeToInitializeAccessArrays(s,A,C,S,AP )
Input : s : Statement in the original AST; A : Access Arrays

C : Counter Variables; S : Inspected Scalars
InOut: AP : AST of code to populate the access arrays

1 begin
2 if s.LHS /∈ S then
3 foreach d ∈ GetDataArrayRefExp(s) do
4 a = AccessArray(A,d.Array,d.IndexExpr) ;
5 c = CounterVariable(C,d.IndexExpr) ;
6 lP = CreateStoreAccessArray(a,c,d.IndexExpr) ;
7 if IsUnitStride(d.IndexExpr) then
8 l = GetLoop(c) ; lP = CreateIfFirstIter(c,lP ) ;

9 AP .Append(lP ) ;

10 else
11 b = ConvertArraysToFunctions(s.RHS) ;
12 lp = AssignmentStatement(s.LHS,b) ;
13 AP .Append(lP ) ;

ments that are assignments to inspected scalars are replicated
with references to indirection arrays replaced with calls to
get_elem by CovertArraysToFunctions. For example, the
right-hand side of xindex=col[j] in Listing 1 is modified
to get_elem(id_col,j). There is no need for any guards
in this phase since the previous phase ensured that all values
needed are known on the current process.

For all other assignment statements, function GetDataAr-
rayRefExp returns the set of all expressions used to access
data array elements. For every such expression, an assignment
is generated by function CreateStoreAccessArray to store the
value of the corresponding index expression, with all refer-
ences to indirection arrays replaced with calls to get_elem.

Further, if the index expression is unit-stride with respect
to a surrounding loop, the statement is enclosed within an if

statement, generated by CreateIfFirstIter, which checks if the
value of the iterator of the loop is same as that stored in the
lower-bound array. For example, in Listing 5, o_a_j stores the
value of expression j used to access array A, and is enclosed
within an if statement that is true for the first loop iteration.

Having populated all access arrays with the original values
of the expressions they represent, these values are now modi-
fied to point to the corresponding locations in the local copies
of the arrays being accessed. For access arrays that represent
expressions that are unit-stride with respect to a loop, the
modified values are element-wise subtracted with the values
stored in the lower-bound array of the loop. Adding the loop
iterator value to this would point to the correct location.
Loops and conditionals: Corresponding to inner loops within
the original partitionable loop, statements to store the value of
the current upper/lower bounds of the loop are inserted in the
AST. The loop itself is inserted after these statements, with
the bounds modified to use these stored values. Conditional
statements are treated similarly.

E. Executor Code

After all phases of the inspector, the loop iterations and
data arrays have been partitioned among the processes. All
access arrays have been initialized with values that point to



the appropriate locations in the local arrays.
The executor code is similar to the original code. All counter

variables are first reset to 0. The lower and upper bounds of
the partitioned loops are set to 0 and the number of assigned
iterations, respectively.
Assignment Statements: For such a statement in the original
code, the corresponding statement in the executor is generated
as follows. Statements that write to inspected scalars are not in-
serted in the executor, since the control flow and array accesses
are handled explicitly through arrays. For all other assignment
statements, accesses to original data arrays are replaced with
accesses to corresponding local arrays. The generated index
expressions depend on the original index expressions. For
those that are unit-stride with respect to a loop, the index
expression is the sum of the iterator value and the value stored
in the corresponding access array. For example, in Listing 2,
the index to array Al is obtained by adding the offset stored in
o_a_j to j. This index expression ensures unit-stride access
to the array. This is important to enable subsequent SIMD
optimizations and good spatial locality and cache prefetching.
To the best of our knowledge, no previously proposed compiler
approaches for I/E code generation ensure this highly-desirable
property. The read from the access array is hoisted out of the
corresponding loop (loop j for the example) since all iterations
use the same offset.

For all other accesses, the access arrays store the index
of the data array element that is to be accessed. In the
executor, the original expression is replaced with a read from
the corresponding access array.
Loops and conditionals: Loops and conditionals from the
original computation are inserted into the AST of the executor,
with loop bounds and conditional expressions modified to read
from the arrays populated by Phase III of the inspector. Similar
to Phases II and III of the inspector, counters are inserted into
the AST of the executor to step through the values stored in
the access arrays.

Once the executor code has been generated for all parti-
tionable loops, communication calls to update the ghosts used
within a loop are inserted before that loop in the executor
AST. Communication calls to update the owner with values
in all ghosts location are also inserted after the loop. The
communication scheme used is described below.

F. Communication Between Processes

Elements of local data arrays consist of both owned and
ghosts locations. Phase I of the inspector initializes them to
their original values. To maintain correctness of the parallel
execution, ghost cells for arrays that are read within a partition-
able loop are updated before the start of the loop, and ghosts
cells of arrays that are updated are communicated to the owner
after the loop execution. For cases where partitionable loops
assign values to array elements instead of updating them, the
value of the ghost location from the process which executes the
last iteration of the original computation is used to overwrite
the value at the owner. The ID of the process can be computed
by the inspector code while partitioning the computation.

Algorithm 2: CodeGenInspectorExecutor(P)
Input : P : partitionable loop AST
Output: AI : Code for the inspector; AE : Code for the executor

1 begin
2 S = GetInspectedScalars(P) ; AI = φ ; AE = φ ;
3 H = CodeToCreateHypergraph(P ,S); AI .Append(H) ;
4 AI .Append(CodeToPartitionIterations(H)) ;
5 D = CodeToAllocateLocalData(H) ;
6 C = DeclareCounterVariables(P); AI .Append(C) ;
7 AC = CodeToGetAccessArraySize(P ,S,C) ;
8 I = CodeToAllocateAccessArrays(P); AC .Append(I );
9 AP = CodeToInitializeArrays(P ,S,C,I) ;

10 AP .Append(CodeToRenumberAccessArrays(C,D,I)) ;
11 AI .Append(AC ) ; AI .Append(AP ) ;
12 AE = GenerateExecutorCode(P ,S,C,I,D) ;

The communication pattern used to update ghosts is similar
to the MPI Alltoallv collective. As the number of partitions
increases, every process has to communicate with only a
small number of other processes. Therefore, the communi-
cation costs are reduced by using one-sided point-to-point
communication APIs provided by ARMCI [28].

G. Putting Everything Together

The overall code generation scheme is shown in Algo-
rithm 2. ASTs of the original partitionable loops are analyzed
to find the inspected scalars. Next, the code to create the
hypergraph is generated as described in Section IV-A, fol-
lowed by the code to partition it. CodeToAllocateLocalData
generates the code to partition the data arrays, as described in
Section IV-B, and allocates local copies for these arrays.

CodeToGetAccessArraySize uses the steps described in
Section IV-C to determine the sizes of the access arrays.
Code to allocate the access arrays and arrays to store loop-
bounds/conditional is then appended to the inspector code.
CodeToInitializeArrays generates code to initialize these ar-
rays, a part of which is presented in Algorithm 1. The values
in the access arrays are then renumbered to point to the correct
locations in the local arrays. The executor code is generated
as outlined in Section IV-E.

V. OPTIMIZATIONS FOR AFFINE CODE

When some partitionable loops in a program are completely
affine, i.e., loop bounds and array-access expressions are
strictly affine functions of surrounding loop iterators (and
program parameters), the code generation described earlier is
correct but introduces unnecessary overhead. For such loops,
inspector code is unnecessary since control-flow and array-
access patterns can be characterized statically. For example, if
loop i in Listing 1 were of the form shown in Listing 6, where
matrix A is dense and hence not stored in the CSR format, the
computation can be analyzed statically.

A regular distribution of the iterations of partitionable loops
(such as block, cyclic, or block-cyclic) is used instead of
the hypergraph partitioning scheme. For data arrays accessed
only through affine expressions, local copies can be computed
as footprints of the partitioned iterations. Polyhedral code
generation can be used since we only partition a single loop,



1 /* Original affine computation */
2 for( i = 0 ; i < n ; i++ )
3 for( j = 0 ; j < n ; j++ )
4 y[i] += A[i][j] * x[j];
5
6 /* Transformed parallel computation */
7 /* Update ghost read values*/
8 for( i = 0 ; i < nl ; i++ )
9 for( j = 0 ; j < n ; j++ )

10 yl[i] += Al[i][j] * xl[j];
11 /* Communicate ghost write values */

Listing 6. Affine conjugate gradient computation (dense matrix).

with the number of iterations on a given process treated as
a parameter. Ghosts can be computed as the intersection of
the process footprints. For all expressions used to access such
arrays, the statements generated by CreateStoreAccessArray
in Algorithm 1 are removed from the inspector AST. The
corresponding expressions in the executor code are the affine
expressions used in the original code. If loop bounds of inner
loops are also affine expressions, these would be used in the
executor instead of storing the loop bounds in arrays.

For all other arrays (accessed through non-affine expres-
sions), the inspector code is used to compute a partitioning
of the arrays and to create arrays that replicate the data-
access patterns, as explained in Section IV. If all arrays are
accessed through affine expressions, the inspector is rendered
unnecessary and is discarded. Polyhedral techniques can be
used to generate the executor code. Listing 6 shows the code
obtained for the executor by following this approach.

VI. EVALUATION

For our experimental evaluation we used a cluster with
Intel Xeon E5630 processors with 4 cores per node and a
clock speed of 2.67GHz, with an Infiniband interconnect.
MVAPICH2-1.7 was used for MPI communications, along
with Global Arrays 5.1 for the ARMCI one-sided commu-
nications. All benchmarks/applications were compiled using
ICC 12.1 at -O3 optimization level.

For partitioning hypergraphs, the PaToH hypergraph parti-
tioner [9] was used. While it supports multi-constraint hyper-
graph partitioning, it is sequential and requires the replication
of the hypergraph on all processes. Since the generated inspec-
tor is inherently parallel, and parallel graph partitioners are
available, an alternative approach was also pursued: convert
the hypergraph to a graph, which can be partitioned in parallel.
For this conversion, an edge was created between every pair
of vertices belonging to the same net. The resulting graph
was partitioned in parallel with ParMetis [40]. Multi-constraint
partitioning (as discussed in Section III) was employed to
achieve load balance between processes while reducing com-
munication costs. We also evaluated a third option: block
partitioning of the iterations of partitionable loops (referred
to as Block), where the cost of graph partitioning can be
completely avoided.

For all benchmarks and applications, all functions were
inlined, and arrays of structures were converted to structures
of arrays for use with our prototype compiler which imple-
ments the transformations described earlier. The compiler was
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Fig. 3. 183.equake with ref input size

developed within the ROSE infrastructure [36].

A. Benchmarks and Application

For evaluation purposes, we used benchmarks with data-
dependent control-flow and array-access patterns. Each bench-
mark has a sequence of partitionable loops enclosed within an
outer sequential (time or convergence) loop, with the control-
flow and array-access pattern remaining the same for every
iteration of that outer loop. All reported execution times are
averaged over 10 runs and are normalized by the average
execution time of the original sequential code.
183.equake [3] is a benchmark from SPEC2000 which simu-
lates seismic wave propagation in large basins. It consists of a
sequence of partitionable loops enclosed within an outer time
loop. The SPEC ref data size was used for the evaluation.
Figure 3a compares the performance of the executor code
using the three partitioning schemes with a manual MPI
implementation by the authors. In all cases, the executor per-
formance is comparable to the manual MPI implementation.
After 64 processes, the performance of all executors drops
off due to the overhead of communication. Figure 3b shows
that the overhead of the inspector while using ParMetis or
block partitioning is negligible, but with PaToH, the sequential
nature of the partitioner adds considerable overhead.
CG kernel The conjugate gradient (CG) method to solve
linear system of equations consists of several partitionable
loops within a convergence loop. Two sparse matrices, hood.rb
and tmt sym.rb, from the University of Florida Sparse Matrix
Collections [12], stored in CSR format were used as inputs.

Figures 4a, 4c show that the executor code achieves good
scaling overall with super-linear scaling between 16 and 64
processes, due to the partitions becoming small enough to fit in
caches. Using block-partitioning gives good performance with
tmt sym but not for hood. For the latter, block partitioning
results in higher number of ghosts cells and therefore higher
communication costs, demonstrating the need for modeling
the iteration-data affinity. The inspector overheads reduce the
overall speed-up achieved, as shown in Figures 4b, 4d. This
cost could be further amortized in cases where the linear
systems represented by the matrices are solved repeatedly, say
within an outer time loop, with the same non-zero structure.
Such cases are common in many scientific applications.

The performance of the executors was also compared to
a manual implementation using PETSc [2] which employed
a block-partitioning of the rows of the matrix. For hood,
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Fig. 4. CG Kernel with hood.rb and tmt sym.rb

Figure 4a shows that the performance of the generated ex-
ecutor code while using PaToH and ParMetis out-performs
the manual PETSc implementation. The performance of the
latter drops off due to the same reason the performance of the
block-partitioned scheme drops off. The generated executors
perform better than the manual implementation for hood when
using PaToH and ParMetis for partitioning. With tmt sym,
the generated executor performs on par with the manual
implementation for all three partitioning schemes (Figure 4c).
P3-RTE [35] This benchmark solves the radiation transport
equation (RTE) [27] approximated using spherical harmonics
on an unstructured physical grid of 164540 triangular cells.
The Finite-Volume Method is used for discretizing the RTE.
Jacobi method is used for solving the system of equations at
each cell center. The different partitionable loops iterate over
cells, faces, nodes, and boundaries of the domain, and are
enclosed within a convergence loop.

Figure 5a compares the executor times for the three schemes
with a manual MPI implementation which uses domain de-
composition of the underlying physical grid to partition the
computation. The results once again show that a simple block-
partitioning could result in poor performance. Surprisingly,
ParMetis performs better than PaToH for higher number of
processes. The executor code while using PaToH or ParMetis
achieves performance comparable to the manual MPI imple-
mentation up to 64 processes. Past that, the manual imple-
mentation achieves super-linear scaling since it significantly
reduces communication costs by replicating some computa-
tion. Using techniques like overlapping communication with
computation could improve the performance of the generated
executor for higher number of processes. Figure 5b shows
that the inspector overhead is negligible even when using the
sequential PaToH partitioner.
miniFE-1.1 [18] This is a mini-application from the Mantevo
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Fig. 5. P3-RTE on unstructured mesh
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Fig. 6. miniFE-1.1 with 100x100x100 grid

suite from Sandia National Laboratories [25]. It uses an
implicit finite-element method over an unstructured 3D mesh.
A problem size of 100 points along each axes was used
for the evaluation. The suite also provides a manual MPI
implementation of the computation. We provide a comparison
of the performance of the automatically parallelized version
against this manually parallelized version.

Figure 6 compares the running times of the executors (using
ParMetis, PaToH, and block-partitioning) with the execution
time for the manual MPI implementation. Up to 128 processes,
the performance of the auto-generated executor is on par with
the manual implementation. For 256 processes, the block-
partitioned version performs slightly better since the manual
implementation uses an approach similar to block partitioning.
Figure 6b shows the speed-up achieved for the total running
times. Since the actual running time of the executor is not
very significant even for the large problem size, the cost of
the inspector dominates the overall running time.
OLAM [45] OLAM (Ocean, Land, and Atmosphere Modeling)
is an application used for climate simulations of the entire
planet. It employs finite-volume methods of discretization to
solve for physical quantities such as pressure, temperature,
and wind velocity over an 3D unstructured grid consisting of
3D prisms covering the surface of the earth. Physical quan-
tities are associated with centers of prisms and prism edges.
The input grid contained 155520 prisms. The neighborhood
information of points is stored in indirection arrays. OLAM is
written in Fortran 90. Unlike the other C benchmarks, which
could be fully automatically transformed by our compiler, the
generation of the inspector/executor code for OLAM required
some manual steps in going from the sequential application to
the code generated by the compiler.

We report performance on an atmospheric model simula-
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tion consisting of 13 partitionable loops enclosed within a
sequential time loop. While the outer loop typically executes
hundreds of thousands of iterations, Figure 7 shows data for
30000 iterations. The time for inspection, even with a se-
quential hypergraph partitioner, is several orders of magnitude
lower than the executor time. Therefore, the PaToH hypergraph
partitioner was used for generating the partitions.

Figure 7 shows that the performance of the code using the
I/E framework (including inspector time) is on par with the
manual MPI implementation. While the former scales linearly
to 128 processes, the latter achieves super-linear scaling due
to domain specific optimizations by experts.

VII. RELATED WORK

Saltz and co-workers [10], [11], [38], [39] proposed the
inspector-executor (I/E) approach for distributed-memory code
generation for scientific applications with irregular access pat-
terns. The PARTI/CHAOS libraries [6], [31] facilitated manual
development of parallel message-passing code. Compiler sup-
port for optimizing communications within the executor was
also explored [1], [44]. An approach to automatic compiler
transformation for generation of I/E code via slicing analysis
was developed [11], but required indirect access of all arrays
in the executor code even when the original sequential code
used direct access through inner loop iterators (for example,
A[j] in Listing 1). Most of these approaches could handle
only one level of indirection. The approach of Das et al. [11]
could handle multiple levels of indirection, but their techniques
are inapplicable to codes such as 183.equake and P3-RTE.
Lain [20], [21] exploited contiguity within irregular accesses
to reduce communication costs and inspector overheads. Since
the layout of data was not explicitly handled to maintain
contiguity, the extent to which this property could be exploited
in the executor depended on the partitioning of data.

Some later approaches have proposed the use of run-time
reordering transformations [13], [17], [26]. Strout et al. [41],
[42] proposed a framework for code generation that combined
run-time and compile-time reordering of data and computation.
The recent work of LaMielle and Strout [22] proposes an
extended polyhedral framework that can generate transformed
code (using inspector/executor) for computations involving
indirect array accesses. The class of computations addressed
by that framework is more general than the partitionable
loops considered here and can handle more general types of
iteration/data reorderings. But the generality of the framework,
without additional optimizations, can result in code that is
less efficient than that generated for partitionable loops here.

For example, restricting the order of execution of inner loops
within partitionable loops to be the same as that of the
original sequential code enables exploitation of contiguity
in data access. Arbitrary iteration reordering would require
use of indirect access for all expressions in the executor
code. Formulation of such domain/context specific constraints
within the sparse polyhedral framework so as to generate more
efficient code is an interesting open question.

Basumallik and Eigenmann [5] presented techniques for
translating OpenMP programs with irregular accesses into
code for distributed-memory machines, by focusing on ex-
ploiting overlap of computation and communication. But the
approach requires partial replication of shared data on all
processes.

A large body of work has considered the problem of loop
parallelization. Numerous advances in automatic paralleliza-
tion and tiling of static control programs with affine array
accesses have been reported [8], [14], [15], [19], [24], [32]. For
loops not amenable to static analysis, speculative techniques
have been used for run-time parallelization [23], [33], [37],
[46]. Zhuang et al. [47] inspect run-time dependences to check
if contiguous sets of loop iterations are dependent. None of
those efforts address distributed memory code generation.

In contrast to prior work, we develop a framework for ef-
fective message-passing code generation and effective parallel
execution of an extended class of affine computations with
some forms of indirect array accesses. We are not aware of
any other compiler work on inspector-executor code generation
that maximize contiguity of accesses in the generated code,
which is important in reducing cache misses as well as
enabling SIMD optimizations in later compiler passes.

VIII. CONCLUSION

Irregular and sparse computations in distributed memory
environments are of significant importance in scientific and
engineering computing. When control-flow and array-access
patterns depend on run-time data, static compiler techniques
need to be combined with run-time inspection. We propose
an inspector/executor parallelization approach for a class of
such applications. The inspector gathers run-time information
about control flow and array accesses, partitions the compu-
tation, and remaps the data and control structures. Several
optimizations are used to exploit contiguity of array accesses.
Experimental results show that the generated code comes
close to the performance achieved by manual parallelization
by domain experts. Future work would focus on optimizing
the communication layer to achieve better scalability of the
generated code.
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